

	POLYNO	mial roots
Degree	Formula	History
1, linear $ax+b=0$	$x = \frac{-b}{a}$	
2, quadratic $ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	Known to the Babylonians
3, cubic $ax^3 + bx^2 + cx + d = 0$	$\begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2$	del Ferro (1515), Tartaglia (1535) Cardano (published 1545)
4, quartic $ax^4 + bx^3 + \dots = 0$	even worse, but it is still algebraic	Ferrari (c1543) Cardano (published 1545)
5, quintic $ax^5 + bx^4 + \dots = 0$	requires hypergeometric functions	Abel (1826, no algebraic solution) Klein (1877)

THE CUBIC SOLUTION

 $-2b^3 - 27a^2d$

 $\sqrt[3]{\frac{9abc-2b^3-27a^2d}{54a^3}} + \sqrt{\frac{27a^2d^2-b^2c^2+4ac^3+4b^3d-18abcd}{108a^4}}$

 $27a^2d$

 $+4ac^{3}+4b^{3}d-18abcd$

 $ax^{3} + bx^{2} + cx + d = 0$ $\int x_{1} = \frac{-b}{3a} + u + v$

 $\frac{-b}{3a} + \left(\frac{-1-i\sqrt{3}}{2}\right)$

 $\frac{-1-i\sqrt{3}}{v}$ where

 $-1+i\sqrt{3}$

	DIC	OPHANTINE QUATIONS
Degree	Solutions	History
1, linear $x + y = z$	Choose any 2 integers, the third will also be an integer.	
2, quadratic $x^2 + y^2 = z^2$	Pythagorean Triples Infinitely many non-trivial solutions, but not all integers can be used.	Known to Greeks, and before that, the Babylonians
3, cubic	Trivial solutions only: At least one variable is zero.	Fermat's Last Theorem (1637) Andrew Wiles (1995)

AL	GEBRAIC (CURVES
Degree	Solutions	History
1, linear $ax+by+c=0$	Lines	
2, quadratic $ax^2 + bxy + cy^2 + dx + ey + f = 0$	Conic sections: 3 types	Known to Greeks
3, cubic $ax^3 + bx^2y + cxy^2 + dy^3 + \dots = 0$	Cubic curves: 78 types	Newton (c1667)
4, quartic $ax^4 + bx^3y + cx^2y^2 + dxy^3 + ey^4 + \dots = 0$		Zeuthen (1874), Bullard (1899), and others

POINTS AT INFINITY

In 3D space:

- Sketch the graph of P(x, y) = 0 on the z = 1 plane.
- Project each point P onto the unit sphere (S, S2).
- Points at infinity are projected onto the equator.
- The projection lines form a surface.

RATIONAL POINTS ON ELLIPTIC CURVES
• Elliptic curves may or may not have (finite) rational points.
$y^{2} = x^{3} + 1$ $y^{2} = x^{3} + 1$ $y^{2} = x^{3} + x + 5$
Exactly 5 Infinite No rational number of rational points rational points points
 If a line intersects an elliptic curve with rational coefficients in 3 points, and 2 of those points are rational points, then the third is also a rational point.

- Elliptic curve discrete logarithmic problem (ECDLP): Given an elliptic curve on a finite field, and two points in that field, find the exponent (or multiple) needed on one point to obtain the other point. $y^2 = x^3 + 4 \mod 241$
- The ECDLP is thought to be even harder then factoring very large integers.

• Bitcoin uses elliptic curve cryptography, specifically $y^2 = x^3 + 7$ over the integers mod 115792089237316195423570985008687907853269984665664054439457584007908834671663

CONGRUENT NUMBER PROBLEM
• Congruent Number Problem (currently unsolved): Find all integers which are areas of right triangles where all three sides are rational numbers. $a^2 + b^2 = c^2$ and $\frac{1}{2}ab = n$
• There is a one-to-one correspondence between congruent numbers and rational points on the elliptic curve $y^2 = x^3 - n^2 x$.
$\begin{cases} x = n(a+c)/b \\ y = 2n^{2}(a+c)/b^{2} \end{cases} \begin{cases} a = (x^{2} - n^{2})/y \\ b = 2nx/y \\ c = (x^{2} + n^{2})/y \end{cases}$
 Tunnell's Theorem (1983) plus BSD Conjecture would prove it.

SUMMARY

Elliptic curves

- were at the heart of the proof of Fermat's Last Theorem
- can be used to encrypt electronic commerce
- are the focus of a \$1,000,000 Millennium Problem
- would crack a unsolved question about $\ensuremath{\mathsf{Pythagorean}}$ triples

Not to mention the shear beauty in the 40 non-singular species of Newton's classification of 72 (78) cubic curves.

EXCITED?

- We live in exciting times (mathematically speaking).
- Can we infect our students with that excitement?
- These slides:
- http://www.milefoot.com/about/presentations/BeyondQuadratics.pdf
- Related slides:

http://www.milefoot.com/about/presentations/EllipticCurves1.pdf