

Outline of the Series

- 1. The World of Algebraic Curves
- 2. Conic Sections and Rational Points
- 3. Projective Geometry and Bezout's Theorem
- 4. Solving a Cubic Equation
- 5. Exploring Cubic Curves
- 6. Rational Points on Elliptic Curves

Isaac Newton (1642-1727)

 "If I have seen further it is by standing on the shoulders of giants." - in a letter to Robert Hooke, 1676.

Timeline

- 1545: Cardano published procedures for solving cubic & quartic equations, and how to transform them.
- 1572: Bombelli established rules for negative & imaginary numbers.
- 1591: Viete advocated the use of letters for unknown quantities and coefficients in polynomials.
- 1637: Descartes' La Geometrie analyzed geometric problems by using algebraic equations.
- 1655: Wallis began with a general quadratic equation in 2 variables to derive properties of the conic sections.
- c1667: Newton classified the cubic curves.

Newton's 4 Cases

 $(Cx+G)y^{2} + (Bx^{2} + Fx + I)y + (Ax^{3} + Ex^{2} + Hx + J) = 0$

After making several more transformations (horizontal, vertical, and/or shear), Newton was able to classify all cubic curves into 4 cases.

Case	Conditions	Equation	Number of Species
1	$C \neq 0$	$xy^2 + ey = ax^3 + bx^2 + cx + d$	71
2	$C=G=0, F\neq 0$	$xy = ax^3 + bx^2 + cx + d$	1
3	$C=0,G\neq 0$	$y^2 = ax^3 + bx^2 + cx + d$	5
4	C=F=G=0	$y = ax^3 + bx^2 + cx + d$	1

Note: When rotating to remove the Dy^3 term, Newton chose to avoid using an asymptote of multiplicity 2. That choice meant the condition C=0 would also imply B=0.

Counting Singularities An irreducible algebraic curve of degree <i>n</i> has at most $\frac{(n-1)(n-2)}{2}$ singularities. An algebraic curve of degree <i>n</i> with no repeated components can have at most $\frac{n(n-1)}{2}$			
Degree	Max Number of Singularities when Irreducible	Max Number of Singularities with No Repeated Components	
1	0	0	
2	0	1	
3	1	3	
4	3	6	
5	6	10	

-

Plücker Formulas

In 1834, Plücker observed the following relations, for irreducible curves of degree at least 2: class = (degree)(degree -1) - 2(nodes) - 3(curps) degree = (class)(class -1) - 2(hitmgents) - 3(inflection points)

inflection points = 3(degree)(degree - 2) - 6(nodes) - 8(cusps) cusps = 3(class)(class - 2) - 6(bitangents) - 8(inflection points)

Only 3 of these equations are independent, but they are sufficient to find all 6 quantities. Additionally, we can define the genus of a curve:

$$g = \frac{(n-1)(n-2)}{2} - \sum \delta_s$$

- where δ_{s} is the delta-invariant of the singularity s .
- For simple nodes and cusps, $\delta_s = 1$.
- Because curves are really 2D surfaces in a 4D space, the genus corresponds to the "number of holes" in the surface (as in topology).

Some Plücker Numbers									
	Degree	Nodes	Cusps	Class	Bitangents	Inflection Pts	Genus		
	2	0	0	2	0	0	0		
	3	1	0	4	0	3	0		
	3	0	1	3	0	1	0		
	3	0	0	6	0	9	1		
	4	3	0	6	4	6	0		
	4	2	1	5	2	4	0		
	4	1	2	4	1	2	0		
	4	0	3	3	1	0	0		
	4	2	0	8	8	12	1		
	4	1	1	7	4	10	1		
	4	0	2	6	1	8	1		
	4	1	0	10	16	18	2		
	4	0	1	9	10	16	2		
	4	0	0	12	28	24	3		

Challenges

- Identify all of the elliptic curves among Newton's 78 species. How many are there?
- Find a degree 4 algebraic curve for each of the 10 types enumerated by Plücker.

Some References (both available online):

- Ball, W.W. Rouse, "On Newton's Classification of Cubic Curves", Proceedings of the London Mathematical Society, vol. 22 (1891), p. 104-143.
- Talbot, C.R.M., "Sir Isaac Newton's Enumeration of Lines of the Third Order", 1860.