

Outline of the Series 1. The World of Algebraic Curves 2. Conic Sections and Rational Points 3. Projective Geometry and Bezout's Theorem 4. Solving a Cubic Equation 5. Exploring Cubic Curves 6. Rational Points on Elliptic Curves

Isaac Newton (1642-1727) "If I have seen further it is by standing on the shoulders of giants." - in a letter to Robert Hooke, 1676. Timeline 1545: Cardano published procedures for solving cubic & quartic equations, and how to transform them. 1572: Bombelli established rules for negative & imaginary numbers. 1591: Viete advocated the use of letters for unknown quantities and coefficients in polynomials. 1637: Descartes' La Geometrie analyzed geometric problems by using algebraic equations. 1655: Wallis began with a general quadratic equation in 2 variables to derive properties of the conic sections. c1667: Newton classified the cubic curves.

	The General Cubic Curve
	$Ax^{3} + Bx^{2}y + Cxy^{2} + Dy^{3} + Ex^{2} + Fxy + Gy^{2} + Hx + Iy + J = 0$
1 billing	Every cubic curve has at least one point at infinity. Homogenize, then let $z=0$ to find points at infinity. $Ax^3 + Bx^2y + Cxy^2 + Dy^3 = 0$ If $A=0$, then $(1,0,0)$ is a point at infinity. If $A\neq 0$ and $y=0$, then $x=0$, but $(0,0,0)$ is not a point. So $y\neq 0$, and $A\left(\frac{x}{y}\right)^3 + B\left(\frac{x}{y}\right)^2 + C\left(\frac{x}{y}\right) + D = 0$ This equation has at least one real solution $\frac{x}{y} = m$.
	Rotate to move that point at infinity to the y-axis: (0,1,0) Then $D=0$: every vertical line intersects only 2 finite points. $(Cx+G)y^2+(Bx^2+Fx+I)y+(Ax^3+Ex^2+Hx+J)=0$

Plücker Formulas ■ In 1834, Plücker observed the following relations, for irreducible curves of degree at least 2: class = (degree/degree-1) - 2(nodes) - 3(cusps) degree - (class)(class - 1) - 2(bitangents) - 3(inflection points)

inflection points = 3(degree)(degree - 2) - 6(nodes) - 8(cusps) $cusps = 3(class)(class - 2) - 6(bitangents) - 8(inflection\ points)$

Only 3 of these equations are independent, but they are sufficient to find all 6 quantities.

Additionally, we can define the genus of a curve:

$$g = \frac{(n-1)(n-2)}{2} - \sum \delta_s$$

where δ_{s} is the delta-invariant of the singularity s .

- $\,\blacksquare\,$ For simple nodes and cusps, $\mathcal{\delta}_{\scriptscriptstyle s}=1$.
- Because curves are really 2D surfaces in a 4D space, the genus corresponds to the "number of holes" in the surface (as in topology).

Some Plücker Numbers								
	Degree	Nodes	Cusps	Class	Bitangents	Inflection Pts	Genus	
	2	0	0	2	0	0	0	
	3	1	0	4	0	3	0	
	3	0	1	3	0	1	0	
	3	0	0	6	0	9	1	
	4	3	0	6	4	6	0	
	4	2	1	5	2	4	0	
	4	1	2	4	1	2	0	
	4	0	3	3	1	0	0	
	4	2	0	8	8	12	1	
11/1/	4	1	1	7	4	10	1	
	4	0	2	6	1	8	1	
11/1	4	1	0	10	16	18	2	
1	4	0	1	9	10	16	2	
1	4	0	0	12	28	24	3	

Challenges
Identify all of the elliptic curves among Newton's 78 species. How many are there?
 Find a degree 4 algebraic curve for each of the 10 types enumerated by Plücker.
Some References (both available online):
. ,
 Ball, W.W. Rouse, "On Newton's Classification of Cubic Curves", Proceedings of the London Mathematical Society, vol. 22 (1891), p. 104-143.
 Talbot, C.R.M., "Sir Isaac Newton's Enumeration of Lines of the Third Order", 1860.