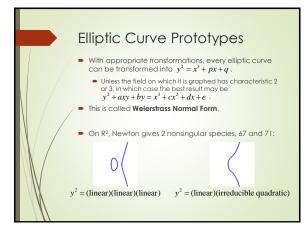


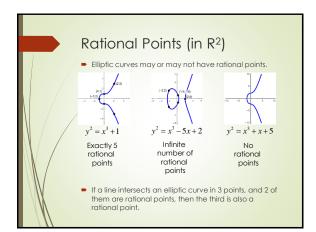
## Outline of the Series

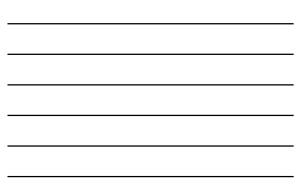
- 1. The World of Algebraic Curves
- 2. Conic Sections and Rational Points
- 3. Projective Geometry and Bezout's Theorem
- 4. Solving a Cubic Equation
- 5. Exploring Cubic Curves
- 6. Rational Points on Elliptic Curves

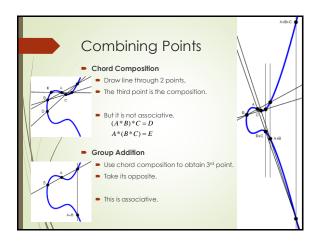
This 6-part series will highlight some of the mathematical topics needed to understand the basics of elliptic curves.

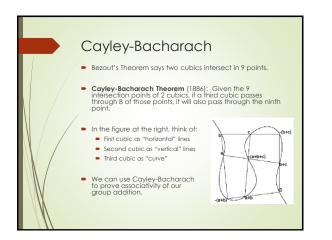


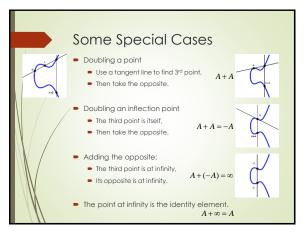








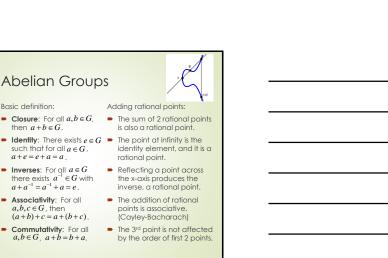


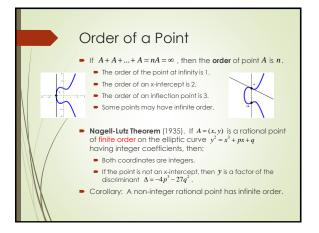


Basic definition:

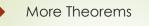
then  $a+b \in G$ .

a+e=e+a=a





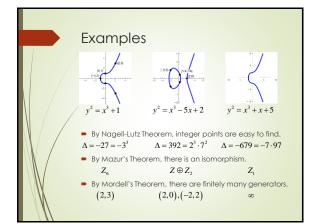
3



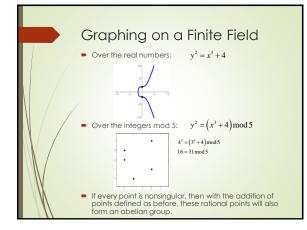
 Mordell's Theorem (1922). The group of rational points on an elliptic curve with rational coefficients is a finitely generated abelian group.

Mazur's Theorem (1982).

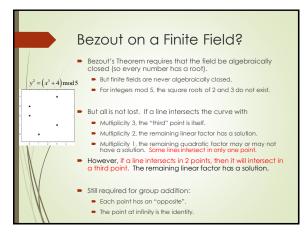
- Suppose a rational point on an elliptic curve has finite order n. Then  $1 \le n \le 12$ , but  $n \ne 11$ .
- The subgroup of rational points of finite order is isomorphic to either  $Z_n$  or to  $Z_2 \oplus Z_k$ , with k = 2, 4, 6, 8. It is called the **torsion subgroup**.
- Therefore: every group of rational points on an elliptic curve is isomorphic to  $Z' \oplus (torsion subgroup)$ , where r is the rank.

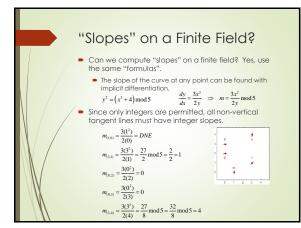


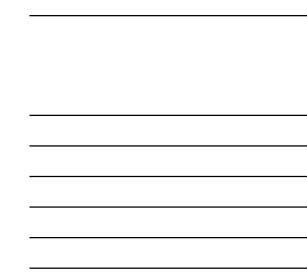


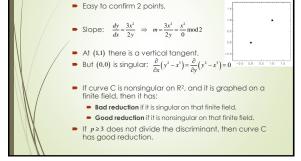




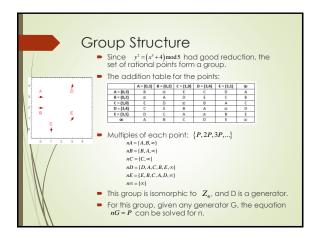




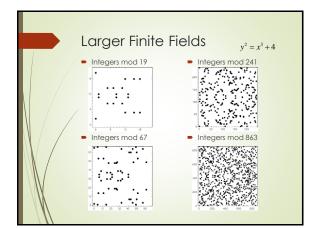




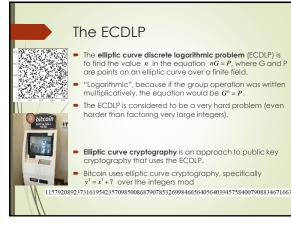
A Simple Case of a Singularity The curve  $y^2 = (x^3+4) \mod 2$  is equivalent to  $y^2 = x^3 \mod 2$ 











|                                                                                                                                                                                                                                                                                           | A Einite             | . Field T                         | boorom                                            |             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|---------------------------------------------------|-------------|--|--|
| A Finite Field Theorem                                                                                                                                                                                                                                                                    |                      |                                   |                                                   |             |  |  |
| • Hasse's Theorem (1933). If p is a prime number, the number of points $\#C(Z_p)$ on the elliptic curve C over the finite field $Z_p$ satisfies the inequality $ \#C(Z_p) - p - 1  \le 2\sqrt{p}$ • Or equivalently: $(\sqrt{p} - 1)^2 \le \#C(Z_p) \le (\sqrt{p} + 1)^2$ • Some results: |                      |                                   |                                                   |             |  |  |
|                                                                                                                                                                                                                                                                                           |                      |                                   |                                                   |             |  |  |
|                                                                                                                                                                                                                                                                                           | Prime                | Max<br>Difference                 | Percent<br>Difference                             | Actual      |  |  |
|                                                                                                                                                                                                                                                                                           | Prime<br>5           |                                   |                                                   | Actual<br>6 |  |  |
|                                                                                                                                                                                                                                                                                           |                      | Difference                        | Difference                                        |             |  |  |
|                                                                                                                                                                                                                                                                                           | 5                    | Difference<br>5                   | Difference<br>100 %                               | 6           |  |  |
|                                                                                                                                                                                                                                                                                           | 5<br>19              | Difference<br>5<br>9              | Difference<br>100 %<br>47.4 %                     | 6<br>21     |  |  |
|                                                                                                                                                                                                                                                                                           | 5<br>19<br>67        | <b>Difference</b><br>5<br>9<br>17 | Difference<br>100 %<br>47.4 %<br>25.4 %           | 6<br>21     |  |  |
|                                                                                                                                                                                                                                                                                           | 5<br>19<br>67<br>241 | Difference<br>5<br>9<br>17<br>32  | Difference<br>100 %<br>47.4 %<br>25.4 %<br>13.3 % | 6<br>21     |  |  |

### Fermat and Modularity

**Fermat's Last Theorem** (conjectured 1637): There are no nontrivial solutions of  $a^n + b^n = c^n$ , when  $n \ge 3$ . -

- Andrew Wiles proved (1995) that every semistable elliptic curve is modular (which was enough to imply Fermat's Last Theorem is true).
  - Given the elliptic curve E, then for each prime number p, we can define  $x_p = 0.E(Z_p) p 1$ , a quantity whose values were considered in Hasse's Theorem . We then define the L-function L(E,p) of the elliptic curve E through an infinite product, specifically  $L(E, s) = \prod_{p \neq m} \left(1 - \frac{s_p}{p'} + \frac{1}{p^{2-1}}\right).$
  - Province set of the s be rewritten as an infinite sum, and we
  - The coefficients  $s_z$  of L(E,x) are then used to define the function  $f_E(z)=\sum_{i=1}^n s_z e^{2\pi i z}$
  - $\begin{array}{c} = \\ & \mbox{tar}\left( \begin{array}{c} a \\ b \end{array} \right) \mbox{ be a matrix of integers, with def} \left( \begin{array}{c} a \\ d \end{array} \right) = 1. (This softection of matrices forms a group could be modular group) \\ & \mbox{ter} H \mbox{ be the softection of C for which the imaginary part is positive. This is often referred to a simular diffusion of the softection of the s$

  - the property that  $f_E(\frac{\alpha x + b}{\alpha x + a}) = (\alpha x + d)^2 f_E(x)$  for every  $x \in H$ , then the elliptic curve E is said to be modular, and the number N is called the conductor of E. ctor of E.

# **BSD** Conjecture

Birch and Swinnerton-Dyer Conjecture (1965): Let E be a rational elliptic curve, and L(E,s) its L-function. The multiplicity of the zero of the function L(E,s) at s=1 is equal to the rank of the group of rational points on E.

In 2000, the Clay Mathematics Institute identified seven **Milennium Problems** as "important classic problems that have resisted solution for many years", and for each of the seven is offering a \$1,000,000 prize for its solution. The BSD conjecture is one of these problems.



## Postscript: Why the Name?

- -Ellipses are conic sections, or algebraic curves of degree 2.
- Elliptic integrals originally arose when solving for the arc length of an ellipse. Now, they describe any integral of the form nu-f n (n/m) n, where R is a rational function, P is a polynomial or degree 3 or 4.
- Elliptic functions were originally defined as functions of elliptic integrals. They are periodic in 2 directions on the complex plane, and satisfy the differential equation  $(y'(z))^2 = P(y(z))$ , where P is a cubic polynomial with no repeated roots.
- Elliptic curves use elliptic functions when parametrized.

# For Further Reading About Elliptic Curves:

- Ash, Avner, & Robert Gross, Elliptic Tales, 2012.
- Silverman, Joseph H., & John T. Tate, Rational Points on Elliptic Curves, 2<sup>nd</sup> edition, 2015.

About Elliptic Curve Cryptography

 Corbellini, Andrea, "Elliptic Curve Cryptography: A Gentle Introduction", andrea.corbellini.name, May 17-June 8, 2015. Sullivan, Nick, "A (Relatively Easy to Understand) Primer on Elliptic Curve Cryptography", ArsTechnica.com, Oct. 24, 2013.

About the Millennium Problems and the BSD Conjecture:

Devlin, Keith, The Millennium Problems, 2002. -

- Johnson, Brent A., "An Infroduction to the Birch and Swinnerton-Dyer Conjecture", Rose-Hulman Undergraduate Mathematics Journal, 16:1 (Spring 2015), p. 270-281.
- Stewart, Ian, Visions of Infinity, 2013.

### More Reading

About the Proof of Fermat's Last Theorem:

- Faltings, Gerd, "The Proof of Fermat's Last Theorem by R. Taylor and A. Wiles", Notices of the American Mathematical Society, 42:7 (July 1995), p. 743-746.
- Hellegouarch, Yves, Invitation to the Mathematics of Fermat-Wiles, 2002.
- Ribenboim, Paulo, Fermat's Last Theorem for Amateurs, 1999.

About the Connection with Ellipses:

- Rice, Adrian, and Ezra Brown, "Why Ellipses are Not Elliptic Curves", Mathematics Magazine, 85 (2012), p. 163-176.
- Brown, Ezra, "Three Fermat Trails to Elliptic Curves", College Mathematics Journal, 31:3 (May 2000), p. 162-172.