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Some Highlights along a 
Path to Elliptic Curves

Part 6:  Rational Points on Elliptic Curves

Steven J. Wilson, Fall 2016

Outline of the Series

1. The World of Algebraic Curves

2. Conic Sections and Rational Points

3. Projective Geometry and Bezout’s Theorem

4. Solving a Cubic Equation

5. Exploring Cubic Curves

6. Rational Points on Elliptic Curves

Elliptic Curve Prototypes

 With appropriate transformations, every elliptic curve 
can be transformed into                             .

 Unless the field on which it is graphed has characteristic 2 

or 3, in which case the best result may be 

.

 This is called Weierstrass Normal Form.

 On R2, Newton gives 2 nonsingular species, 67 and 71:

2 3y x px q  

2 3 2y axy by x cx dx e     

2 (linear)(linear)(linear)y  2 (linear)(irreducible quadratic)y 
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Rational Points (in R2)

 Elliptic curves may or may not have rational points.

 If a line intersects an elliptic curve in 3 points, and 2 of 

them are rational points, then the third is also a 

rational point.

2 3 1y x 
2 3 5 2y x x   2 3 5y x x  

Exactly 5
rational 

points

Infinite 
number of

rational 

points

No
rational 

points

Combining Points

 Chord Composition

 Draw line through 2 points,

 The third point is the composition.

 But it is not associative.

 Group Addition

 Use chord composition to obtain 3rd point.

 Take its opposite.

 This is associative.

( * )*

*( * )

A B C D

A B C E





Cayley-Bacharach

 Bezout’s Theorem says two cubics intersect in 9 points.

 Cayley-Bacharach Theorem (1886):  Given the 9 
intersection points of 2 cubics, if a third cubic passes 
through 8 of those points, it will also pass through the ninth 
point.

 In the figure at the right, think of:

 First cubic as “horizontal” lines

 Second cubic as “vertical” lines

 Third cubic as “curve”

 We can use Cayley-Bacharach
to prove associativity of our 
group addition.
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Some Special Cases

 Doubling a point

 Use a tangent line to find 3rd point,

 Then take the opposite.

 Doubling an inflection point

 The third point is itself,

 Then take the opposite.

 Adding the opposite:

 The third point is at infinity,

 Its opposite is at infinity.

 The point at infinity is the identity element.

A A

( )A A   

A A A  

A A 

Abelian Groups

Basic definition:

 Closure:  For all              , 

then                 .  

 Identity:  There exists            
such that for all           ,                                

.

 Inverses:  For all            
there exists               with

.  

 Associativity:  For all
, then

.

 Commutativity:  For all
,                      . 

Adding rational points:

 The sum of 2 rational points 

is also a rational point.

 The point at infinity is the 
identity element, and it is a 

rational point.

 Reflecting a point across 
the x-axis produces the 

inverse, a rational point.

 The addition of rational 
points is associative.  

(Cayley-Bacharach)

 The 3rd point is not affected 

by the order of first 2 points.

,a b G
a b G 

a G
e G

a e e a a   

a G
1a G 

1 1a a a a e    

, ,a b c G
( ) ( )a b c a b c    

,a b G a b b a  

Order of a Point

 If                                          , then the order of point     is    .

 The order of the point at infinity is 1.

 The order of an x-intercept is 2.

 The order of an inflection point is 3.

 Some points may have infinite order.

 Nagell-Lutz Theorem (1935).  If                 is a rational point 

of finite order on the elliptic curve                            

having integer coefficients, then:

 Both coordinates are integers.

 If the point is not an x-intercept, then     is a factor of the 

discriminant                              .

 Corollary:  A non-integer rational point has infinite order.

...A A A nA     

( , )A x y
2 3y x px q  

y
3 24 27p q   

A n
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More Theorems

 Mordell’s Theorem (1922).  The group of rational points 
on an elliptic curve with rational coefficients is a 

finitely generated abelian group.

 Mazur’s Theorem (1982). 

 Suppose a rational point on an elliptic curve has finite 

order     .  Then                  ,  but            .

 The subgroup of rational points of finite order is isomorphic to 

either        or to                , with                    .  It is called the 

torsion subgroup.

 Therefore:  every group of rational points on an elliptic 

curve is isomorphic to                                        , where      is 
the rank. 

n 1 12n  11n 

nZ 2 kZ Z 2,4,6,8k 

 torsion subgrouprZ  r

Examples

 By Nagell-Lutz Theorem, integer points are easy to find.

 By Mazur’s Theorem, there is an isomorphism.

 By Mordell’s Theorem, there are finitely many generators.

2 3 1y x 
2 3 5 2y x x   2 3 5y x x  

327 3     3 2392 2 7    679 7 97     

6Z

 2,3

2Z Z

   2,0 , 2,2

1Z



Graphing on a Finite Field

 Over the real numbers:

 Over the integers mod 5:  

 If every point is nonsingular, then with the addition of 
points defined as before, these rational points will also 
form an abelian group.

2 3 4y x 

 2 3 4 mod5y x 

 2 34 3 4 mod5

16 31mod5

 


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Bezout on a Finite Field?

 Bezout’s Theorem requires that the field be algebraically 
closed (so every number has a root).

 But finite fields are never algebraically closed.

 For integers mod 5, the square roots of 2 and 3 do not exist.

 But all is not lost.  If a line intersects the curve with

 Multiplicity 3, the “third” point is itself.

 Multiplicity 2, the remaining linear factor has a solution.

 Multiplicity 1, the remaining quadratic factor may or may not 
have a solution.  Some lines intersect in only one point.

 However, if a line intersects in 2 points, then it will intersect in 
a third point.  The remaining linear factor has a solution.

 Still required for group addition:

 Each point has an “opposite”.

 The point at infinity is the identity.

 2 3 4 mod5y x 

“Slopes” on a Finite Field?

 Can we compute “slopes” on a finite field?  Yes, use 
the same “formulas”.

 The slope of the curve at any point can be found with 

implicit differentiation.

 Since only integers are permitted, all non-vertical 

tangent lines must have integer slopes.

2 23 3
mod5

2 2

dy x x
m

dx y y
  

2

(1,0)

2

(3,1)

2

(0,2)

2

(0,3)

2

(3,4)

3(1 )

2(0)

3(3 ) 27 2
mod5 1

2(1) 2 2

3(0 )
0

2(2)

3(0 )
0

2(3)

3(3 ) 27 32
mod5 mod5 4

2(4) 8 8

m DNE

m

m

m

m

 

   

 

 

   

 2 3 4 mod5y x 

A Simple Case of a Singularity

 The curve                             is equivalent to

 Easy to confirm 2 points.

 Slope:

 At         there is a vertical tangent.

 But          is singular:

 If curve C is nonsingular on R2, and it is graphed on a 
finite field, then it has:

 Bad reduction if it is singular on that finite field.

 Good reduction if it is nonsingular on that finite field.

 If          does not divide the discriminant, then curve C 
has good reduction. 

 2 3 4 mod 2y x 
2 3 mod 2y x

2 2 23 3
mod 2

2 2 0

dy x x x
m

dx y y
   

 1,1

 0,0    2 3 2 3 0y x y x
x y

 
   

 

3p 
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Group Structure
 Since                             had good reduction, the 

set of rational points form a group. 

 The addition table for the points:

 Multiples of each point:  

 This group is isomorphic to       , and D is a generator.

 For this group, given any generator G, the equation
can be solved for n.

 2 3 4 mod5y x 

6Z

 , 2 ,3 ,...P P P
{ , , }

{ , , }

{ , }

{ , , , , , }

{ , , , , , }

{ }

nA A B

nB B A

nC C

nD D A C B E

nE E B C A D

n

 

 

 

 

 

  

nG P

Larger Finite Fields

 Integers mod 19

 Integers mod 67

 Integers mod 241

 Integers mod 863

2 3 4y x 

The ECDLP

 The elliptic curve discrete logarithmic problem (ECDLP) is 
to find the value      in the equation             , where G and P 

are points on an elliptic curve over a finite field.

 “Logarithmic”, because if the group operation was written 
multiplicatively, the equation would be            . 

 The ECDLP is considered to be a very hard problem (even 

harder than factoring very large integers).

 Elliptic curve cryptography is an approach to public key 

cryptography that uses the ECDLP.

 Bitcoin uses elliptic curve cryptography, specifically
over the integers mod

nG Pn

2 3 7y x 

nG P
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A Finite Field Theorem
 Hasse’s Theorem (1933).  If     is a prime number, the 

number of points              on the elliptic curve     over 

the finite field       satisfies the inequality 

 Or equivalently:  

 Some results:

p

# ( )pC Z C

pZ

# ( ) 1 2pC Z p p  

Prime Max 

Difference

Percent 

Difference

Actual

5 5 100 % 6

19 9 47.4 % 21

67 17 25.4 % 57

241 32 13.3 %

863 59 6.84 %

1.158 x 1077 6.806 x 1038 5.877 x 10-37 % 1.158 x 1077

   
2 2

1 # ( ) 1pp C Z p   

Fermat and Modularity
 Fermat’s Last Theorem (conjectured 1637):  There are 

no nontrivial solutions of                   , when          .

 Andrew Wiles proved (1995) that every semistable

elliptic curve is modular (which was enough to imply 
Fermat’s Last Theorem is true).

n n na b c  3n 

BSD Conjecture

 Birch and Swinnerton-Dyer Conjecture (1965):   Let     be 
a rational elliptic curve, and              its L-function.  The 

multiplicity of the zero of the function              at          is 

equal to the rank of the group of rational points on    .

 In 2000, the Clay Mathematics Institute identified seven 

Millennium Problems as “important classic problems that 
have resisted solution for many years”, and for each of 

the seven is offering a $1,000,000 prize for its solution.  

The BSD conjecture is one of these problems.   

( , )L E s

E

( , )L E s 1s 

E
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Postscript:  Why the Name?

 Ellipses are conic sections, or algebraic curves of 
degree 2.

 Elliptic integrals originally arose when solving for the 

arc length of an ellipse.  Now, they describe any integral 
of the form                          , where R is a rational function, 

P is a polynomial of degree 3 or 4.

 Elliptic functions were originally defined as 
inverse functions of elliptic integrals.  They are periodic in 

2 directions on the complex plane, and satisfy the 

differential equation                       , where P is a cubic 
polynomial with no repeated roots. 

 Elliptic curves use elliptic functions when parametrized.

 
2

( ) ( ( ))y z P y z 
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