" Some Highlights along a
Path to Elliptic Curves

Part é: Rational Points on Elliptic Curves
Steven J. Wilson, Fall 2016

11/8/2016

Outline of the Series

1. The World of Algebraic Curves

2. Conic Sections and Rational Points

3. Projective Geometry and Bezout's Theorem
/4A Solving a Cubic Equation

5. Exploring Cubic Curves

6. Rational Points on Elliptic Curves

This 6-part
series will highlight some of the mathematical topics
needed to understand the basics of elliptic curves.

Elliptic Curve Prototypes

» With appropriate transformations, every elliptic curve
can be fransformed into y? = x* + px+q .

= Unless the field on which it is graphed has characteristic 2
or 3, in which case the best result may be
y? +axy +by =x* +cx’ +dx+e .

= This is called Weierstrass Normal Form.

= On R2, Newton gives 2 nonsingular species, 67 and 71:

0

y? = (linear)(linear)(linear) y* = (linear)(irreducible quadratic)




Rational Points (in R?)

= Flliptic curves may or may not have rational points.

Yy =x*+1 y? =x*—5x+2 Yy =x3+x+5

Exactly 5 Infinite No
rational number of rational
points rational points
points

= |f aline intersects an elliptic curve in 3 points, and 2 of
them are rational points, then the third is also a
rational point.
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Combining Points

= Chord Composition
= Draw line through 2 points,

= The third point is the composition.

= Butitis not associative.
(A*B)*C=D
A*(B*C)=E

/ = Group Addition

= Use chord composition to obtain 39 point.

= Take its opposite.

= This is associative.

Cayley-Bacharach
= Bezout's Theorem says two cubics infersect in 9 points.

= Cayley-Bacharach Theorem (1886): Given the 9
intersection points of 2 cubics, if a third cubic passes
through 8 of those points, it will also pass through the ninth
point.

= |n the figure at the right, think of:
= First cubic as "horizontal” lines
= Second cubic as “vertical” lines
= Third cubic as “curve”

» We can use Cayley-Bacharach
to prove associativity of our
group addition.




Some Special Cases

= Doubling a point
= Use a tangent line to find 3 point, A+ A

= Then take the opposite.

= Doubling an inflection point

= The third point isitself,
A+A=-A

= Then take the opposite.

Adding the opposite:
= The third point is at infinity,
A+(-A)=x

= |ts opposite is at infinity.

» The point at infinity is the identity element.
A+oo=A
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Abelian Groups

Basic definition: Adding rational points:

= Closure: Foralla,beG, = The sum of 2 rational points
then a+beG. is also a rational point.

= |dentity: There existsee G = The point at infinity is the
such that forallae G, identity element, and it is a
a+e=e+a=a. rational point.

= |nverses: For °1H aeG = Reflecting a point across
there exists @ € G with the x-axis produces the
a+a'‘=a'+a=e. inverse, a rational point.

= Associativity: For all = The addition of rational
a,b,ceG, then points is associative.
(a+b)+c=a+(b+c). (Cayley-Bacharach)

= Commutativity: For all = The 39 point is not affected
a,beG a+b=b+a. by the order of first 2 points.

Order of a Point

» |f A+A+..+ A=nA=w, then the order of point Ais n.
= The order of the point at infinityis 1.
= The order of an x-intercept is 2.
= The order of an inflection point is 3.

= Some points may have infinite order.

= Nagell-Lutz Theorem (1935). If A=(x,y) is a rational point
of finite order on the elliptic curve y*=x*+ px+q
having integer coefficients, then:

= Both coordinates are integers.

= |fthe point is not an x-intercept, then Y is a factor of the
discriminant A=-4p*-27¢°.

= Corollary: A non-integer rational point has infinite order.




More Theorems

= Mordell's Theorem (1922). The group of rational points
on an elliptic curve with rational coefficients is a
finitely generated abelian group.

= Mazur's Theorem (1982).

= Suppose a rational point on an elliptic curve has finite
order N. Then 1<n<12, but n#11,

= The subgroup of rational points of finite order is isomorphic fo
either Z, orto Z,®Z, , with k=2,4,6,8. Itiscalled the
torsion subgroup.

= Therefore: every group of rational points on an elliptic
curve is isomorphic to Z" @ (torsion subgroup) , where I is
the rank.
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Examples

YV =x*+x+5

= By Nagell-Lutz Theorem, integer points are easy to find.

A=-27=-3 A=392=2°.7" A=-679=-7.-97
= By Mazur's Theorem, there is an isomorphism.
&g 7207, %
= By Mordell's Theorem, there are finitely many generators.
(2:3) (2,0),(-2.2) =

Graphing on a Finite Field

= Over the real numbers: yZ =x+4

= Over the infegers mod 5: y’ = (X3 + 4) mod5

. 42 =(3+4)mod5
16=31mod5

= |f every point is nonsingular, then with the addition of
points defined as before, these rational points will also
form an abelian group.




Bezout on a Finite Field?2

= Bezout's Theorem requires that the field be algebraically
closed (so every number has a root).

= Forinfegers mod 5, the square roots of 2 and 3 do not exist.

|
|
+4)mod5 = But finite fields are never algebraically closed.

| » But allis not lost. If a line intersects the curve with
| = Multiplicity 3, the “third" point is itself.
= Multiplicity 2, the remaining linear factor has a solution.

= Multiplicity 1, the remaining quadratic factor may or may not
have a solufion. Some lines intersect in only one point.

= However, if a line intersects in 2 points, then it will intersect in
a third point. The remaining linear factor has a solution.

= Still required for group addition:
= Each point has an “opposite”.
= The point at infinity is the identity.
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“Slopes” on a Finite Field?

= Canwe compute “slopes” on afinite field?2 Yes, use
the same “formulas”.

= The slope of the curve at any point can be found with
implicit differentiation.

dy _3x* 3’
y* = (X +4)mod5 &_x

= = m==—mod5
dx 2y 2y
= Since only integers are permitted, all non-vertical
tangent lines must have integer slopes.

.
’“um:@:DNE
2(0)
33 27 2
My, =——->=—mod5=—=1
=50 " 2 2
3(0)
mmz):ﬁzo
3(09)
m‘w:ﬁ:
>
M =28 -2 0532 mods -4
24) 8 8

A Simple Case of a Singularity

= The curve y?=(x’+4)mod2 is equivalent to y? =x*mod2
= Easy to confirm 2 points.

. Wy 3¢ %
= Slope: azy = m= 2y 0 mod 2
= Af (11) there is a vertical tangent.

i i LB oy P2

0,0 T 2 (y =) ==(y*-%*)=

= But (0,0) is singular Bx(y x) 8y(y x)=0

= |f curve Cis nonsingular on R2, and it is graphed on a
finite field, then it has:

= Bad reduction if it is singular on that finite field.
= Good reduction if it is nonsingular on that finite field.

= |f p23 does not divide the discriminant, then curve C
has good reduction.




Group Structure

| = Since yzz(x’+4 mod5 had good reduction, the
| set of rational points form a group.

f = The addition table for the points:

I3 Ao 8= | €101 | D= (341 | =1 | =@
o o = o
= x 3
€ o A
- c € R
B E = (3 o < B
' o A B c E x

= Multiples of each point: {P,2P,3P,...}
nA={AB,x}
nB={B,Ax}
nC ={C.e}
nD={D,AC,B,E,}
nE ={E,B,C, A D, o}
oo ={oc}
= This group is isomorphic to  Zg, and D is a generator.

= For this group, given any generator G, the equation
nG =P can be solved for n.
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Larger Finite Fields Fmred
= |ntegers mod 19 = |ntegers mod 241

The ECDLP

The elliptic curve discrete logarithmic problem (ECDLP) is
to find the value n in the equation nG =P, where G and P
are points on an elliptic curve over a finite field.

“Logarithmic", because if the group operation was written
multiplicatively, the equation would be G" =P.

The ECDLP is considered to be a very hard problem (even
harder than factoring very large integers).

Elliptic curve cryptography is an approach to public key
cryptography that uses the ECDLP.

Bitcoin uses elliptic curve cryptography, specifically
y?=x*+7 over the integers mod
115792089237316195423 57098 5008687907853 269984665640564039457584007908834671663




A Finite Field Theorem

= Hasse'sTheorem (1933). If p is a prime number, the
number of points #C(Z,) on the elliptic curve C over
the finite field Z, satisfies the inequality

‘#C(Zu)7 pfl‘SZ\/B
= Orequivalently: (yp-1) <#C(z,)<(yp+1)
/ = Some results:

Max Percent Actual
Difference Difference
5 ) 6

100 %
19 9 47 4 % 21
67 17 25.4% 57
241 32 13.3%
863 59 684 %

1.158x 1077 6.806x10% 5.877x10% % 1.158 x 1077
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Fermat and Modularity

= Fermat's Last Theorem (conjectured 1637): There are
no nontrivial solutions of a"+b" =¢", when n=3.

= Andrew Wiles proved (1995) that every semistable
elliptic curve is modular (which was enough to imply
Fermat's Last Theorem is true).

BSD Conjecture

= Birch and Swinnerton-Dyer Conjecture (1965): Let E be
a rational elliptic curve, and L(E,s) its L-function. The
multiplicity of the zero of the function L(E,s) at s=1is
equal to the rank of the group of rational points on E.

= |n 2000, the Clay Mathematics Institute identified seven
Millennium Problems as “important classic problems that
have resisted solution for many years", and for each of
the seven is offering a $1,000,000 prize for its solution.
The BSD conjecture is one of these problems.




Postscript: Why the Name?

= Ellipses are conic sections, or algebraic curves of
degree 2.

= Elliptic integrals originally arose when solving for the
arc length of an ellipse. Now, they describe any integral
of the form f;qfi”»[;,v‘m «, where R is a rational function,
P is a polynomiai ot degree 3 or 4.

= Elliptic functions were originally defined as
inverse functions of elliptic integrals. They are periodic in
2 directions on the complex plane, and satisfy the
differential equation (y(2))'=P(y(2)), where P is a cubic
polynomial with no repeated roofs.

= Elliptic curves use elliptic functions when parametrized.
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About Elliptic Curves:
= Ash, Avner, & Robert Gross, Elliptic Tales, 2012.
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About Elliptic Curve Cryptography
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Introduction”, andrea.corbellininame, May 17-June 8, 2015.

= Sullivan, Nick, "A (Relatively Easy fo Understand) Primer on

Elliptic Curve Cryptography”, ArsTechnica.com, Oct. 24, 2013.

About the Millennium Problems and the BSD Conjecture:
= Devlin, Keith, The Millennium Problems, 2002.

= Johnson, Brent A., “An Introduction to the Birch and
Swinnerton-Dyer Conjecture”, Rose-Hulman Undergraduate
Mathematics Journal, 16:1 (Spring 2015), p. 270-281.

= Stewart, lan, Visions of Infinity, 2013.

More Reading

About the Proof of Fermat's Last Theorem:

= Faltings, Gerd, “The Proof of Fermat's Last Theorem by
R. Taylor and A. Wiles", Notices of the American
Mathematical Society, 42:7 (July 1995), p. 743-746.

= Hellegouarch, Yves, Invitation to the Mathematics of

p Fermat-Wiles, 2002.

/= Ribenboim, Paulo, Fermat'’s Last Theorem for

Amateurs, 1999.

About the Connection with Ellipses:

= Rice, Adrian, and Ezra Brown, “Why Ellipses are Not
Elliptic Curves"”, Mathematics Magazine, 85 (2012), p.
163-176.

= Brown, Ezra, “Three Fermat Trails to Elliptic Curves”,
College Mathematics Journal, 31:3 (May 2000), p. 162-
172.




