AND YOU THOUGHT THE BIRTHDAY PROBLEM WAS ONLY A CURIOSITY?

Steven J. Wilson Johnson County Community College AMATYC 2014, Nashville, Tennessee

THE BIRTHDAY PROBLEM

How many people must be in a room before the probability of at least two sharing a birthday is greater than 50%?

JOHNNY CARSON

Johnny Carson's stab at it ...

http://www.cornell.edu/video/ the-tonight-show-with-johnnycarson-feb-6-1980-excerpt

Also Feb 7, Feb 8

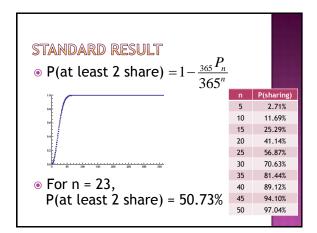
Johnny Carson, 1925-2005 Ed McMahon, 1923-2009

SOLUTION

- P(at least 2 share) = 1 P(no one shares)
- To find P(no one shares), do probabilities of choosing a non-matching birthday:

$=\frac{365}{365}\times\frac{364}{365}\times\frac{363}{365}\times\frac{362}{365}\times\cdots\times\left(1-\frac{n-1}{365}\right)$			
$365 \times 364 \times 363 \times \cdots \times (365 - (n - 1))$			
= <u></u>			
365!365 P_n			
$-\frac{1}{(365-n)!\times 365^n} - \frac{1}{365^n}$			

• So P(at least 2 share) = $1 - \frac{365}{365^n}$



REACTIONS?

The birthday problem used to be a splendid illustration of the advantages of pure thought over mechanical manipulation ...

... what calculators do not yield is understanding, or mathematical facility, or a solid basis for more advanced, generalized theories.

--- Paul Halmos (1916-2006), I Want to Be a Mathematician, 1985

MY QUESTIONS? (MY OUTLINE)

- Is this only a curiosity?
- How was this computed historically?
- What is the underlying distribution?
- Generalizations?
- Applications?

NOT THEORETICAL?

[After solving the Birthday Problem]

"The next example in this section not only possesses the virtue of giving rise to a somewhat surprising answer, but it is also of theoretical interest."

- Sheldon Ross, A First Course in Probability, 1976

NOVEL? SO-CALLED?

[After developing a formula for the probability that no point appears twice when sampling with replacement]

"A novel and rather surprising application of [the formula] is the so-called birthday problem."

- Hoel, Port, & Stone, Introduction to Probability Theory, 1971

THE LEGENDARY SOURCE

Richard von Mises (1883-1953) often gets credit for posing it in 1939, but ...

... he sought the expected number of repetitions as a function of the number of people.

BUT EVEN EARLIER ...

Ball & Coxeter included it in their 11th edition of *Mathematical Recreations* and *Essays*, published in 1939.

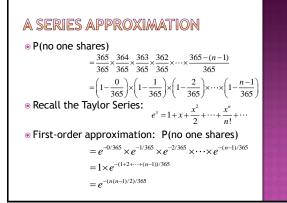
They gave credit to Harold Davenport (1907-1969), who shared it about 1927.

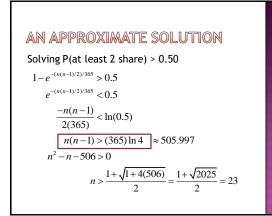
But he did not think he was the originator either.

COMPUTING BEFORE CALCULATORS?

So how did they do the computations back then?

Paul Halmos: "The birthday problem used to be a splendid illustration of the advantages of pure thought over mechanical manipulation ..."





OR MORE GENERALLY...

$$n(n-1) > d \ln 4$$

$$n^{2} - n - d \ln 4 > 0$$

$$n > \frac{1 + \sqrt{1 + 4d \ln 4}}{2}$$

$$n > 0.5 + \sqrt{0.25 + d \ln 4}$$

$$n \approx 0.5 + 1.177 \sqrt{d}$$

Г

... OR WITH MENTAL MATH $n > 0.5 + \sqrt{0.25 + d \ln 4}$ $n \approx 0.5 + 1.177 \sqrt{d}$ $n \approx 1.2 \sqrt{d}$ So *n* is roughly proportional to the square root of *d*, with proportionality constant about 1.2. $n \approx 1.2 \sqrt{365} \approx 22.93$ $n \approx 0.5 + 1.177 \sqrt{365} \approx 22.99$

(Pat'sBlog attributes the factor 1.2 to Persi Diaconis)

A HEURISTIC EXPLANATION

 P(2 people not sharing) = ³⁶⁴/₃₆₅
 Among n people, number of pairs = ⁿC₂ = ⁿ⁽ⁿ⁻¹⁾/₂
 For 23 people, there are 253 pairs!
 That's 253 chances of a birthday match!

• P(2 of n people sharing) $\approx 1 - \left(\frac{364}{365}\right)^{\frac{364-7}{2}}$ • Alarm Bells! Independence assumed!

IGNORING THE ALARM
• P(2 of n people sharing)
$$\approx 1 - \left(\frac{364}{365}\right)^{\frac{n(n-1)}{2}}$$

• Alarm Bells temporarily suppressed!
• Solving: $1 - \left(\frac{364}{365}\right)^{\frac{n(n-1)}{2}} > 0.5$
 $n^2 - n - 505.3 > 0$
• gives n > 22.98

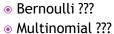
UNDERLYING DISTRIBUTION? • Discrete or Continuous? Discrete or Continuous?

		independent
Geometric	First Sutess	n varies, constant p, independent
Negative Binomial	k-th Suctess	n varies, constant p, independent
Multinomial	No. of Each Type	Piked n. constant p. independent

• These answer the wrong question

BALLS IN BINS

- Place *n* indistinguishable balls into *d* distinguishable bins.
- \odot Balls \rightarrow People, Bins \rightarrow Birthdays
- When does one bin contain two (or more) balls?



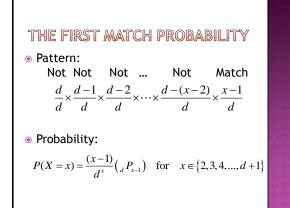
THE FIRST MATCH PATTERN

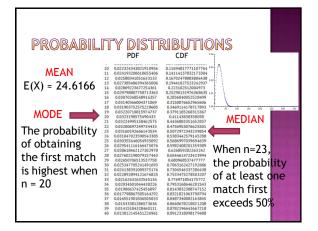
- How many trials to get the first match?
- Variables:

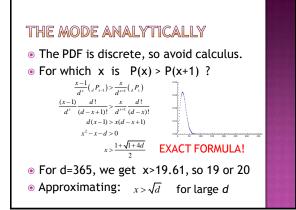
x = number of trials to get the first matchd = number of equally likely options(birthdays)

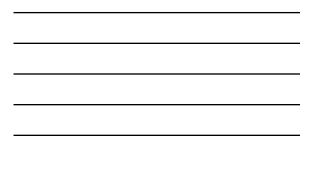
• Pattern:

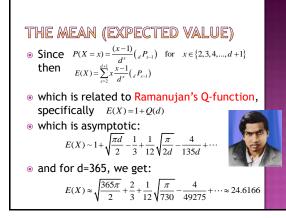
Not Not Not ... Not Match $\frac{d}{d} \times \frac{d-1}{d} \times \frac{d-2}{d} \times \dots \times \frac{d-(x-2)}{d} \times \frac{x-1}{d}$

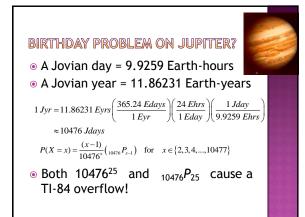


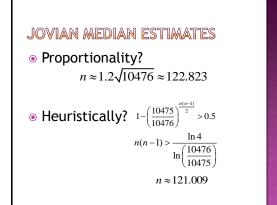










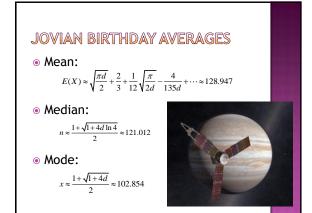


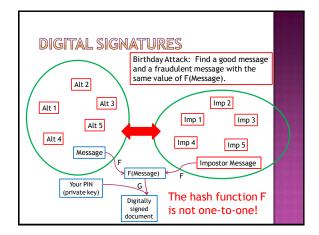


MORE JOVIAN MEDIAN ESTIMATES

• Series Approximation: $\frac{10476}{10476} \times \frac{10475}{10476} \times \dots \times \frac{10476 - (n-1)}{10476} < 0.5$ $n(n-1) > (10476) \ln 4$ $n \approx 121.012$

• Mathematica: for n = 121, P(match) = 50.13%





MATCHING BETWEEN 2 SETS

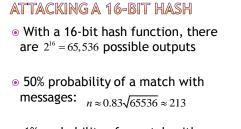
Given *n* good messages, *n* fraudulent messages, and a hash function with *d* possible outputs, what is the probability of a match between 2 sets?

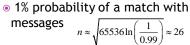
• Assume $n \ll d$, so *n* outputs are probably all different.

• P(message 1 in set 1 doesn't match set 2) = $1 - \frac{n}{d}$

MATCHING BETWEEN 2 SETS

- P(no message in set 1 matches anything in set 2) = $\left(1 - \frac{n}{d}\right)^n \approx \left(e^{-n/d}\right)^n = e^{-n^2/d}$
- ◎ 50% probability of at least one match between the sets: $1 - e^{-n^2/d} > 0.50$ $n^2 > d \ln 2$ $n \approx 0.83 \sqrt{d}$
- Probability p of at least one match between the sets: $n \approx \sqrt{d \ln(\frac{1}{1-p})}$





IMPROVING THE DEFENSE

Increase the size of the hash function: • With 64-bits, 2⁶⁴ = 18,446,744,073,709,551,616 outputs are possible

50% probability of a match with
 3.5 billion messages
 (11 messages per US citizen)

 1% probability of a match with 431 million messages

ANSWERS TO MY QUESTIONS

• Is this only a curiosity?

- No, it's part of a class of problems
- How was this computed historically?
- Using approximations (including Taylor Series)
- What is the underlying distribution?
 - "First Match" Distribution
- Generalizations?
 - Vary days in a year (other planets)
- Applications?
 - Digital signatures

THANK YOU!

- Steven J. Wilson Johnson County Community College Overland Park, KS 66210 swilson@jccc.edu
- A PDF of the presentation is available at: http://www.milefoot.com/about/presentations/birthday.pdf