Confessions of an Integermaniac

Steven J. Wilson NebMATYC, April 2011 Omaha, Nebraska

A Bit of Perspective

- Small minds discuss persons.
- Average minds discuss events.
- Great minds discuss ideas.
- Really great minds discuss mathematics.

From AMATYC News, January 2009, attributed to an unknown source.

The Four Fours Problem Create the integers from 1 to 100 using four fours and any operations. 1 = 4 / 4 + 4 - 4 2 = 4 / 4 + 4 / 4

- 3 = (4 + 4 + 4) / 4
- 4 = 4 + 4 x (4 4)

Four Fours ...

- is an example of recreational mathematics
- is easy and fun for beginners
- can be challenging for advanced students
- can become addicting
- solutions can be found online in many places

A Long History

David Singmaster, Chronology of Recreational Mathematics:

- 1743, Dilworth: The Schoolmaster's Assistant – first Four Fours type problem.
 Supplate bit for the f
- 1881, General Four Fours problem appears in *Knowledge* – previously only specific cases had been set.

The Web	Site	math /integer	mania
1(10) <u>4+4</u> <u>4+4</u> Carolyn Neptane, 306 Prairie Village, KS	$\begin{array}{c} 2 (1.0) \\ \underline{4 \times 4} \\ \underline{4 + 4} \\ Carolyn Neptme, 406 \\ Prairie Village, KS \end{array}$	$\frac{\frac{3(1.0)}{4 \times 4 - 4}}{Dave Jones, 5006}$	4(1.0) (4-4) × 4 + 4 Date Jones, 5.06 Coverity, England
$\frac{11}{4} (2.2)$ $\frac{4}{4} + \frac{4}{4}$ $Matt Wattors, 4.06$ $Prairie Village, KS$	$ \begin{array}{c} 12 \ (1.0) \\ \left(4 - \frac{4}{4}\right) \times 4 \\ \text{Levi Self, 6/06} \\ \text{Sm. Ratorio, TX} \end{array} $	13 (2.4) <u>4</u> <u>4</u> 4 	$\frac{\frac{14}{(2.4)}}{\frac{4+4}{\overline{.4}}} - 4$ Steve Wilson, 7/06 Raytown, M0
$\frac{\frac{21}{4}(2.2)}{\frac{4}{4\times4\%}} - 4$ Dave Jones, 10/06 Coverity, Bigland	$\frac{4+4}{\overline{4}} + 4$ Steve Wilson, 7/06 Raytown, MO	23 (3.2) 4 - 4 ⁴⁻⁴ Pellegrini Paolo, 7/08 Martina France, Italy	24 (1.0) 4 × 4 + 4 + 4 Carolyn Neptune, 4/06 Prairie Village, KS
31 (3.2) $\sqrt[4]{4} = \frac{4}{4}$ Pellegrini Paolo, 708 Martina France, haly	32 (1.0) $4 \times 4 + 4 \times 4$ Levi Self, 606 San Artonio, TX	$\frac{33 (3.2)}{\sqrt[4]{4}} + \frac{4}{4}$ Pellegrini Paolo, 7/08 Matina Franca, haly	34 (2.2) 44 - <u>4</u> .4 Dare Jones, 6006 Coventry, England
0.00		0.00	

Selecting a Best Solution

- Q: Since we can't post every possible solution, how do we define the best solution?
- A: The best solution will be the simplest in terms of the operations used (since the digits used are always identical).

Exquisiteness The highest level operation used • Level 1: 4 + 4, 4 - 4, 4 × 4, 4 / 4 • Level 2: 44, 4.4, 4. $\overline{4}$, 4% • Level 3: 4!, $\sqrt{4}$, $\sqrt[4]{4}$, 4% • Level 4: log(4/4), cot(arctan(4%)) • Level 5: $_{4!}C_4$, $\Gamma(4)$ with a 0.2 surcharge for each unary operation

The Web S http://www.i	Site milefoot.com/	math/integer	mania
$\begin{array}{c} 1 \ (1.0) \\ \frac{4+4}{4+4} \\ \hline \\ Carolyn Neptme, 306 \\ Prairie Village, KS \end{array}$	$\begin{array}{c} 2 \ (1.0) \\ \frac{4 \times 4}{4 + 4} \\ \hline \\ Carolyn Neptme, 4/06 \\ Prairie Village, KS \end{array}$	$ \frac{3 (1.0)}{4 \times 4 - 4} $ Dave Jones, 5006 Coventry, Digland	$\begin{array}{c} 4 (1.0) \\ (4-4) \times 4 + 4 \\ \text{Dere Jones, 506} \\ \text{Covertry, England} \end{array}$
$\frac{11}{4} \frac{(2.2)}{4} + \frac{4}{4}$ Matt Watters, 4,06 Prairie Village, KS	$ \begin{pmatrix} 12 (1.0) \\ 4 - \frac{4}{4} \\ \text{Levi Self, 606} \\ \text{San Antonio, TX} \end{cases} $	13 (2.4) <u>4</u> + 4 Steve Wilson, 7/06 Raytown, MO	$\frac{\frac{14}{4+4}}{\frac{4+4}{\overline{4}}} - 4$ Steve Wilcon, 706 Raytown, M0
$\frac{\frac{21}{4}}{\frac{4}{4 \times 4\%}} = 4$ Dave Jones, 10/06 Covering, England	$\frac{4+4}{\overline{4}} + 4$ Steve Wilson, 7006 Raytown, M0	23 (3.2) 4 - 4 ⁴⁻⁴ Pellegrini Paolo, 7/08 Martina France, Italy	$\begin{array}{c} \textbf{24} \ (1.0) \\ \textbf{4} \times \textbf{4} + \textbf{4} + \textbf{4} \\ \textbf{Carolyn Neptune, 4.06} \\ \textbf{Prairie Village, KS} \end{array}$
31 (3.2) $\sqrt[4]{4} = \frac{4}{4}$ Pellegrini Paolo, 7/08 Matina Franca, haly	32 (1.0) 4 × 4 + 4 × 4 Levi Self, 606 San Antonio, TX	$\frac{33}{\sqrt[4]{4}} + \frac{4}{4}$ Pellegrini Paolo, 7.08 Martina France, Italy	34 (2.2) 44 - <u>4</u> .4 Dave Jones, 606 Coventry, England
0.00		0.00	11.000

How to Become a Master

- Know singles and pairs
- Record everything you find
- Don't just try for the next number
- Work all variations on a pattern
- Understand how operations work
- Use the computer

How Operations Work = Binary ops: 3 + 5, $\sqrt[3]{8}$, $_{4+7}C_3$ = Unary ops: 6%, 4!, $\sqrt{4}$, sinh(ln 2) = Limited ops: 2.34 = 2,34, $= 2\frac{34}{100} = \frac{234}{100}$ $2.\overline{34} = 2,34$, $= 2\frac{34}{99} = \frac{232}{99}$ $2.3\overline{4} = 2,34$, $= 2\frac{3}{10} + \frac{4}{90} = \frac{211}{90}$

Hash Tables

- Create a table for each possible subset of digits: {4}, {4, 4}, {4, 4, 4}, {4, 4, 4}
- Style: {integer, solution string, level}
- Include limited ops in each hash table
- Do unary ops on each hash table
- Do binary ops on the "smaller" hash tables to produce entries for the "larger" hash tables

Care to Contribute?	
	4294N7329 (3.2) 4 ^{42×4} + 41 3oh Cove. 200 Loom, 33
3866342847(3) 4444 Ba.Dwelat, 1007 Solianii, Bacjiwal	
	propsk(3.4)
	$\left(rac{4}{.4} ight)$ Brim, Hollenbeck, 503 Baporin, RS
	$\left(\frac{4}{-4}\right)^{-(\sqrt{2})\text{Bin} \text{ arcsec} \sqrt{\sqrt{4}} \times \infty}_{\text{Bin} \text{ arcsec} \sqrt{\sqrt{4}} \times \infty}$

