Counting Parenthesizings with Decimals

Steven J. Wilson Kansas-MAA, May 2009 Pittsburg, Kansas

In general, with *n* distinct values and *k* binary operations, there are at most $\frac{k^{n-1}(2n-2)!}{(n-1)!}$ solutions.

solutions.

• Let P_{n-1} be the number of parenthesizings of $m_1p_1m_2...m_{n-1}p_{n-1}m_n$

$$= (m_1 p_1 m_2 \dots p_{q-1} m_q) p_q (m_{q+1} p_{q+1} m_{q+2} \dots p_{n-1} m_n)$$

$$\begin{split} P_{n-1} &= \sum_{q=1}^{n} P_{q-1} P_{n-q-1} \ , P_0 = 1 \\ P_{n+1} &= \sum_{q=0}^{n} P_{q} P_{n-q} \ , P_0 = 1 \end{split}$$

1

Actual Solutions?

For the set { 2, 3, 4, 5, 8 }, with operations { +, -, x, \div }

- Formula predicts at most 430,080 solutions
- Thanks to field axioms and just plain coincidence, only 4,802 distinct rational solutions (and 1 undefined "solution")
- Of those, 488 are integers

Formula is Least Upper Bound

- Let a, b c { 2, 3, 4, 5, 8}
- Let k c {1, 6, 7, 9}
- Define
- $a \oplus_{k} b = k \times 10^{2 + [\log_{10} a] + [\log_{10} b]} + a \times 10^{1 + [\log_{10} b]} + b$
- Then every solution is unique

Example: $(2 \oplus_6 3) \oplus_7 (5 \oplus_1 (4 \oplus_9 8))$

 $a \oplus_k b = k \times 10^{2 + [\log_{10} b]} + a \times 10^{1 + [\log_{10} b]} + b$

 $2 \oplus_{6} 3 = 6 \times 10^{2 + \left[\log_{10} 2\right] + \left[\log_{10} 3\right]} + 2 \times 10^{1 + \left[\log_{10} 3\right]} + 3 = 623$

 $4 \oplus_9 8 = 9 \times 10^{2 + \left[\log_{10} 4\right] + \left[\log_{10} 8\right]} + 4 \times 10^{1 + \left[\log_{10} 8\right]} + 8 = 948$

 $5 \oplus_1 948 = 1 \times 10^{2 \cdot [\log_{10} 2^3] \cdot [\log_{10} 98^3]} + 5 \times 10^{1 \cdot [\log_{10} 98^3]} + 948 = 15948$ 623 $\oplus_1 15948 = 7 \times 10^{2 \cdot [\log_{10} 62^3] \cdot [\log_{10} 1948]} + 623 \times 10^{1 \cdot [\log_{10} 1948]} + 15948 = 762315948$

762315948

7(6(2,3),1(5,(9(4,8)))) $(2 \oplus_{6} 3) \oplus_{7} (5 \oplus_{1} (4 \oplus_{9} 8))$

More Decimals	and Repeaters
With one digit	 With three digits
2 = 2	234 2.34
$.2 = \frac{2}{10}$	23.4 .234
- 2	$23.\overline{4}$.23 $\overline{4}$
$.2 = \frac{-}{9}$	2.34 .234
	2.34 .234

Partitioning Needed

- For *n* values, we now need to know the partitions of *n*.
- For example, for the set { 2, 3, 4, 5, 8 }, n = 5
- Seven partitions of 5:
 5 4+1 3+1+1
 3+2 2+1+1+1
 2+2+1 1+1+1+1+1

Limited Operation Counting

- Identify partitions
- Assign values to partition elements
- Arrange values in each partition element
- Add decimal and repeater points
- Count solutions with earlier formula
- Total

Partition	Assign	Arrange	Points	Formula	Total	
5	1	5!	$\binom{7}{2}$	$1! 4^{1-1}C(1-1)$	2520	
4 + 1	$\binom{5}{4}$	4!	$\binom{6}{2}\binom{3}{2}$	$2! 4^{2-1}C(2-1)$	43200	
3 + 1 + 1	$\binom{5}{3}$	3!	$\binom{5}{2}\binom{3}{2}^2$	$3! 4^{3-1}C(3-1)$	1036800	
3+2	$\binom{5}{3}$	3121	$\binom{5}{2}\binom{4}{2}$	$2! 4^{3-1}C(2-1)$	57600	
2 + 1 + 1 + 1	$\binom{5}{2}$	2!	$\binom{4}{2}\binom{3}{2}^3$	$4! 4^{4-1}C(4-1)$	24883200	
2 + 2 + 1	$\binom{5}{2}\binom{3}{2}$	2121	$\binom{4}{2}^{2}\binom{3}{2}$	$3! 4^{3-1}C(3-1)$	2488320	
1 + 1 + 1 + 1 + 1	1	1	$\binom{3}{2}^{3}$	$5! 4^{5-1}C(5-1)$	104509440	
					133021080	

The Answers

- For the set { 2, 3, 4, 5, 8 }, with operations { +, -, x, ÷, c, . , ⁻ }, the number of solutions is at most
- without limited operations: 430,080
- with PVCs only: 2,435,040
- with all limited operations: 133,021,080

Questions ?

- Steven J. Wilson
- Johnson County Community College
- swilson@jccc.edu
- http://staff.jccc.edu/swilson/