

Spent Fuel and Circuit Gain: What's in a Log?

Steven J. Wilson, Johnson County C.C., Overland Park, KS Stephen Hayton, Minot State U., Minot, ND

> AMATYC, Jacksonville, FL November, 2012

Disclaimer

- This presentation is **NOT** about
 - \circ doing logs
 - \circ rules of logs
 - \circ computing logs
 - \circ calculations with logs
 - \circ etc. and so forth...
- Rather, it is about

 understanding logs conceptually ...

POP QUIZ !!!

- No discussions with your neighbor
- One minute time limit
- Complete the sentence: A logarithm is _____

Results in a Business Calculus 1 Class: The Five Good Answers (of 36)

- The inverse of e^x
- The inverse of an exponential
- A function used to determine exponent
- The exponent required to produce a given #
- Inverse of Exponitioal [sic]

Results in a Business Calculus 1 Class: The Six Basic Answers (of 36)

- A function
- A function
- A type of function
- A function
- Function
- A mathmatic function [sic]

Results in a Business Calculus 1 Class: A Selection of the 25 Wrong Answers

- An expression to find unusual exponent rates
- A function that increases at a high rate
- Something I can use but can't define
- The derivative of an exponential
- Annoying
- The opposite of an exponent
- No idea but I think it has something to do with the number 10
- Base function (depending on specific base)
- One of the words for math. (I don't know)

Part 2 of the POP QUIZ!

Select ALL that apply:

A logarithm is:

- a) A set of rules
- b) An exponent
- c) A number
- d) An order of magnitude
- e) A function
- f) A transformation
- g) An inverse

Some	Part	2 Re	sults
301110	i ui t	2 110	Juits

Answer	From 36 students in Business Calculus I	From 64 students in Calc 3 or Circuits (both with a Calc 2 prerequisite)
Function	69%	67%
Inverse	64%	65%
Number	58%	69%
Exponent	44%	71%
Set of Rules	50%	42%
Order of magnitude	42%	48%
Transformation	39%	41%

What are your thoughts about these numbers?

More Thoughts

• What issues do you find in teaching logs?

- \circ "Logs are just treated as another calculator exercise"
- \circ "Logs are just another section in a student's journey in math"
- What's in a log?

Understanding?

• Are we asking students to understand applications based on their [lack of] understanding of logs?

logs based on their [lack of] understanding of applications?

• Or are we asking

understand? - Distance

• What applications can

we expect students to

- Time
- Money Temperature students to understand
 - pH Levels
 - Earthquake Intensity

Distance

(how well do they - and we - really have a handle on it?)

- Collect the following information from the internet. Use the same unit of length for each. Do NOT use scientific notation.
 - The diameter of a hydrogen atom
 - Thickness of a human hair
 - The height of Lebron James (plays basketball for the Miami Heat)
 - The distance from Kansas City to Denver
 - The diameter of the earth
 - The distance from the earth to the sun
 - The diameter of the Milky Way Galaxy
- Compute the logarithm of each number.
- Explain how the logarithms are growing.
- Why use logarithms rather than the original number?

Item	Values	Logarithms
Hydrogen atom	0.00000000106 m	- 9.80
Human hair	0.0001 m	- 4.00
Lebron James	2.01 m	0.30
Kansas City to Denver	970900 m	5.99
Diameter of the earth	12756000 m	7.11
Earth to Sun	15000000000 m	11.18
Milky Way Galaxy	9500000000000000000000 m	20.98

One College Algebra Book's Presentation of Sound Intensity

- A definition: $B = 10 \log \frac{I}{I_0}$ measures psychological sensation of loudness.
- The reference intensity: $I_0 = 10^{-12} \text{ W/m}^2$
- Table of common sounds and their decibel levels
- Example: Find the decibel intensity level of a jet engine during takeoff if intensity was 100 W/m².

So what has the student learned? Psychology? Isn't this "just another calculator exercise"?

Sound Intensity: The Real Issue

Circuit Gain

- o ... or What Are you Doing to Your Ears?
- You increase the volume from 3.1 to 3.2. What is the percent increase in intensity on your ears?
 Hint: 3% is wrong. 10³²

$$\frac{10^{3.2}}{10^{3.1}} = 10^{0.1} \approx 1.2589$$

o About a 26% increase!

• What about an increase from 90.1 to 90.2 dB?

What's in a Log?

- Functions, inverses, numbers
 - $\,\circ\,$ And about 2/3 of students are learning these
- Exponents
 - $\circ~$ In spite of the emphasis from college algebra textbooks, it is taking a long time for students to learn this
- Order of Magnitude
 - Less than half of students know this, even though it describes a key feature of logarithms, and college algebra textbooks rarely mention it

Contact Information

- Steven J. Wilson, Professor of Mathematics
- Johnson County Community College, Overland Park, KS
- <u>swilson@jccc.edu</u>, 913-469-8500, <u>www.milefoot.com</u>
- Stephen Hayton, Asst. Professor of Math & Computer Science
- Minot State University, Minot, ND
- <u>stephen.hayton@minotstateu.edu</u>, 701-858-3075