\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)

Integermania!

Digits of Pi

This Integermania problem is a bit different than the others, as different digits will be used to create each of the integers. In particular, the following two ADDITIONAL rules must be met:

Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400).

                    0 (1.0)
$0 + 0 + 0 + 0 \times 3.$
Steve Wilson, 3/23
Lawrence, KS
  1 (1.0)
$\dfrac{1 \times 4 + 1 \times 5}{9}$
Steve Wilson, 3/23
Lawrence, KS
2 (1.0)
$\dfrac{2 \times 6 - 5 + 3}{5}$
Dana Reigle, 3/23
Lewisburg, PA
3 (1.0)
$(8 + 9 - 7 - 9) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
4 (1.0)
$2 \times 3 + 8 - 4 - 6$
Dana Reigle, 3/23
Lewisburg, PA
5 (1.0)
$2 - (6 - 4 - 3) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
6 (1.0)
$(8 + 3) \times 2 - 7 - 9$
Dana Reigle, 3/23
Lewisburg, PA
7 (1.0)
$5 + 0 + 2 + 8 - 8$
Steve Wilson, 3/23
Lawrence, KS
8 (1.0)
$4 + 1 + 9 - 7 + 1$
Steve Wilson, 3/23
Lawrence, KS
9 (1.0)
$6 + \dfrac93 + 9 - 9$
Steve Wilson, 3/23
Lawrence, KS
10 (1.0)
$(3 + 7) + (5 + 1) \times 0$
Jacob Heasley, 3/23
York, PA
  11 (1.0)
$\dfrac{5 \times 8}{2} + 0 - 9$
Jacob Heasley, 3/23
York, PA
12 (1.0)
$7 + 4 + 9 - 4 - 4$
Jacob Heasley, 3/23
York, PA
13 (1.0)
$5 + 9 + 2 - 3 + 0$
Jacob Heasley, 3/23
York, PA
14 (1.0)
$\dfrac{7}{8 \times 1 - 6} \times 4$
Jacob Heasley, 3/23
York, PA
15 (2.2)
$0 + \dfrac{6}{.2 \times (8 - 6)}$
Steve Wilson, 4/23
Lawrence, KS
16 (1.0)
$(2 + 0) \times 8 + 9 - 9$
Dana Reigle, 4/23
Lewisburg, PA
17 (2.4)
$8 + \dfrac{6 + 2}{.\overline{8}} + 0$
Steve Wilson, 4/23
Lawrence, KS
18 (1.0)
$3 + 4 + 8 - 2 + 5$
Dana Reigle, 4/23
Lewisburg, PA
19 (1.0)
$3 \times (4 + 2) \times 1 + 1$
Dana Reigle, 4/23
Lewisburg, PA
20 (2.4)
$(7 + 0 + 6 + 7) \times .\overline{9}$
Steve Wilson, 4/23
Lawrence, KS
  21 (1.0)
$8 \times 2 + 1 - 4 + 8$
Dana Reigle, 4/23
Lewisburg, PA
22 (1.0)
$0 - 8 + 6 \times 5 \times 1$
Steve Wilson, 4/23
Lawrence, KS
23 (1.0)
$(3 + 2) \times \dfrac82 + 3$
Dana Reigle, 4/23
Lewisburg, PA
24 (1.0)
$0 + 6 - 6 \times (4 - 7)$
Dana Reigle, 5/23
Lewisburg, PA
25 (1.0)
$0 + 9 \times 3 - \dfrac84$
Dana Reigle, 5/23
Lewisburg, PA
26 (1.2)
$-4 + 6 \times (0 \times 9 + 5)$
Dana Reigle, 5/23
Lewisburg, PA
27 (2.0)
$(5 + 0) \times 5.8 - 2$
Steve Wilson, 5/23
Lawrence, KS
28 (1.0)
$2 + (3 + 1) \times 7 - 2$
Dana Reigle, 5/23
Lewisburg, PA
29 (1.2)
$- 5 + 3 - 5 + 9 \times 4$
Dana Reigle, 5/23
Lewisburg, PA
30 (2.2)
$0 + 8 \times \dfrac{1 + 2}{.8}$
Steve Wilson, 5/23
Lawrence, KS
  31 (1.0)
$4 \times 8 - 1 \times 1 \times 1$
Steve Wilson, 5/23
Lawrence, KS
32 (1.0)
$(7 + 4 + 5) \times (0 + 2)$
Steve Wilson, 5/23
Lawrence, KS
33 (1.0)
$8 \times 4 + 1 + 0 \times 2$
Steve Wilson, 5/23
Lawrence, KS
34 (1.0)
$7 + 0 + 1 \times 9 \times 3$
Dana Reigle, 6/23
Lewisburg, PA
35 (2.0)
$8 \times (5 - 2) + 11$
Dana Reigle, 6/23
Lewisburg, PA
36 (1.0)
$0 + \left(5 - \dfrac55\right) \times 9$
Steve Wilson, 6/23
Lawrence, KS
37 (2.0)
$\dfrac{64 + 4 + 6}{2}$
Dana Reigle, 6/23
Lewisburg, PA
38 (1.0)
$2 - 9 \times 4 \times (8 - 9)$
Dana Reigle, 6/23
Lewisburg, PA
39 (2.0)
$(5 - 4) \times 9 + 30$
Dana Reigle, 6/23
Lewisburg, PA
40 (1.0)
$3 \times 8 + 1 + 9 + 6$
Steve Wilson, 6/23
Lawrence, KS
  41 (2.0)
$44 - 2 - \dfrac88$
Steve Wilson, 6/23
Lawrence, KS
42 (2.2)
$10 + \dfrac{9 + 7}{.5}$
Steve Wilson, 6/23
Lawrence, KS
43 (1.0)
$6 \times 6 - 5 + 9 + 3$
Steve Wilson, 6/23
Lawrence, KS
44 (2.0)
$34 + 4 + 6 \times 1$
Dana Reigle, 7/23
Lewisburg, PA
45 (1.2)
$(-2 + 8 - 4 + 7) \times 5$
Dana Reigle, 7/23
Lewisburg, PA
46 (2.0)
$(6 + 4 - 8) \times 23$
Dana Reigle, 7/23
Lewisburg, PA
47 (2.4)
$.\overline{3} \times (7 + 8) + 6 \times 7$
Steve Wilson, 7/23
Lawrence, KS
48 (1.0)
$8 \times 3 \times (1 + 6 - 5)$
Dana Reigle, 7/23
Lewisburg, PA
49 (2.2)
$-2 + 71 - 20$
Steve Wilson, 7/23
Lawrence, KS
50 (2.6)
$\dfrac{1 + 9}{.0\overline{9} + .1}$
Steve Wilson, 7/23
Lawrence, KS
  51 (2.0)
$45 - 6 + 4 + 8$
Steve Wilson, 7/23
Lawrence, KS
52 (1.0)
$5 + 6 \times 6 + 9 + 2$
Dana Reigle, 7/23
Lewisburg, PA
53 (3.2)
$3 + 46 + 0! + 3$
Steve Wilson, 9/23
Lawrence, KS
54 (2.0)
$48 + 6 + 1 \times 0$
Steve Wilson, 7/23
Lawrence, KS
55 (2.0)
$45 + 4 \times 3 - 2$
Dana Reigle, 8/23
Lewisburg, PA
56 (1.0)
$6 \times 6 + 4 + 8 \times 2$
Dana Reigle, 8/23
Lewisburg, PA
57 (1.0)
$(1 + 3 \times 3 + 9) \times 3$
Steve Wilson, 8/23
Lawrence, KS
58 (3.2)
$-6 + 0 \times 7 + 2^6$
Steve Wilson, 9/23
Lawrence, KS
59 (2.2)
$0 + \dfrac{2}{4\%} + 9 \times 1$
Steve Wilson, 8/23
Lawrence, KS
60 (1.0)
$(4 \times 1 + 2) \times (7 + 3)$
Steve Wilson, 8/23
Lawrence, KS
  61 (2.8)
$-.7 - 2 \times .4 + \dfrac{5}{8\%}$
Steve Wilson, 9/23
Lawrence, KS
70066 63 (3.0)
$0 + 63 \times 1^5$
Steve Wilson, 9/23
Lawrence, KS
64 (2.2)
$.5 \times (8 + 8) \times (1 + 7)$
Steve Wilson, 9/23
Lawrence, KS
48815 20920 67 (1.0)
$9 + 6 \times (2 + 8) - 2$
Dana Reigle, 8/23
Lewisburg, PA
92540 69 (2.0)
$91 - 7 - 15$
Dana Reigle, 8/23
Lewisburg, PA
70 (2.0)
$3 + 64 - 3 + 6$
Dana Reigle, 8/23
Lewisburg, PA
  78925 90360 01133 05305 48820 46652 13841 46951 94151 16094
  33057 27036 57595 91953 09218 61173 81932 61179 31051 18548

Page 1 (1-400).