\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)
This Integermania problem is a bit different than the others, as different digits will be used to create each of the integers. In particular, the following two ADDITIONAL rules must be met:
Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.
Page 1 (1-400).
0 (1.0) $0 + 0 + 0 + 0 \times 3.$ Steve Wilson, 3/23 Lawrence, KS |
||||||||||
1 (1.0) $\dfrac{1 \times 4 + 1 \times 5}{9}$ Steve Wilson, 3/23 Lawrence, KS |
2 (1.0) $\dfrac{2 \times 6 - 5 + 3}{5}$ Dana Reigle, 3/23 Lewisburg, PA |
3 (1.0) $(8 + 9 - 7 - 9) \times 3$ Dana Reigle, 3/23 Lewisburg, PA |
4 (1.0) $2 \times 3 + 8 - 4 - 6$ Dana Reigle, 3/23 Lewisburg, PA |
5 (1.0) $2 - (6 - 4 - 3) \times 3$ Dana Reigle, 3/23 Lewisburg, PA |
6 (1.0) $(8 + 3) \times 2 - 7 - 9$ Dana Reigle, 3/23 Lewisburg, PA |
7 (1.0) $5 + 0 + 2 + 8 - 8$ Steve Wilson, 3/23 Lawrence, KS |
8 (1.0) $4 + 1 + 9 - 7 + 1$ Steve Wilson, 3/23 Lawrence, KS |
9 (1.0) $6 + \dfrac93 + 9 - 9$ Steve Wilson, 3/23 Lawrence, KS |
10 (1.0) $(3 + 7) + (5 + 1) \times 0$ Jacob Heasley, 3/23 York, PA |
|
11 (1.0) $\dfrac{5 \times 8}{2} + 0 - 9$ Jacob Heasley, 3/23 York, PA |
12 (1.0) $7 + 4 + 9 - 4 - 4$ Jacob Heasley, 3/23 York, PA |
13 (1.0) $5 + 9 + 2 - 3 + 0$ Jacob Heasley, 3/23 York, PA |
14 (1.0) $\dfrac{7}{8 \times 1 - 6} \times 4$ Jacob Heasley, 3/23 York, PA |
Page 1 (1-400).