\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)

Integermania!

Digits of Pi

This Integermania problem is a bit different than the others, as different digits will be used to create each of the integers. In particular, the following two ADDITIONAL rules must be met:

Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400).

                    0 (1.0)
$0 + 0 + 0 + 0 \times 3.$
Steve Wilson, 3/23
Lawrence, KS
  1 (1.0)
$\dfrac{1 \times 4 + 1 \times 5}{9}$
Steve Wilson, 3/23
Lawrence, KS
2 (1.0)
$\dfrac{2 \times 6 - 5 + 3}{5}$
Dana Reigle, 3/23
Lewisburg, PA
3 (1.0)
$(8 + 9 - 7 - 9) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
4 (1.0)
$2 \times 3 + 8 - 4 - 6$
Dana Reigle, 3/23
Lewisburg, PA
5 (1.0)
$2 - (6 - 4 - 3) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
6 (1.0)
$(8 + 3) \times 2 - 7 - 9$
Dana Reigle, 3/23
Lewisburg, PA
7 (1.0)
$5 + 0 + 2 + 8 - 8$
Steve Wilson, 3/23
Lawrence, KS
8 (1.0)
$4 + 1 + 9 - 7 + 1$
Steve Wilson, 3/23
Lawrence, KS
9 (1.0)
$6 + \dfrac93 + 9 - 9$
Steve Wilson, 3/23
Lawrence, KS
10 (1.0)
$(3 + 7) + (5 + 1) \times 0$
Jacob Heasley, 3/23
York, PA
  11 (1.0)
$\dfrac{5 \times 8}{2} + 0 - 9$
Jacob Heasley, 3/23
York, PA
12 (1.0)
$7 + 4 + 9 - 4 - 4$
Jacob Heasley, 3/23
York, PA
13 (1.0)
$5 + 9 + 2 - 3 + 0$
Jacob Heasley, 3/23
York, PA
14 (1.0)
$\dfrac{7}{8 \times 1 - 6} \times 4$
Jacob Heasley, 3/23
York, PA
           

Page 1 (1-400).