\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\antilog}{antilog} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} \)

Integermania!

Digits of Pi

This Integermania problem is a bit different than the others, as different digits will be used to create each of the integers. In particular, the following two ADDITIONAL rules must be met:

Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1+), ... Index to All Pages.

                    0 (1.0)
$0 + 0 + 0 + 0 \times 3.$
Steve Wilson, 3/23
Lawrence, KS
  1 (1.0)
$\dfrac{1 \times 4 + 1 \times 5}{9}$
Steve Wilson, 3/23
Lawrence, KS
2 (1.0)
$\dfrac{2 \times 6 - 5 + 3}{5}$
Dana Reigle, 3/23
Lewisburg, PA
3 (1.0)
$(8 + 9 - 7 - 9) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
4 (1.0)
$2 \times 3 + 8 - 4 - 6$
Dana Reigle, 3/23
Lewisburg, PA
5 (1.0)
$2 - (6 - 4 - 3) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
6 (1.0)
$(8 + 3) \times 2 - 7 - 9$
Dana Reigle, 3/23
Lewisburg, PA
7 (1.0)
$5 + 0 + 2 + 8 - 8$
Steve Wilson, 3/23
Lawrence, KS
8 (1.0)
$4 + 1 + 9 - 7 + 1$
Steve Wilson, 3/23
Lawrence, KS
9 (1.0)
$6 + \dfrac93 + 9 - 9$
Steve Wilson, 3/23
Lawrence, KS
10 (1.0)
$(3 + 7) + (5 + 1) \times 0$
Jacob Heasley, 3/23
York, PA
  11 (1.0)
$\dfrac{5 \times 8}{2} + 0 - 9$
Jacob Heasley, 3/23
York, PA
12 (1.0)
$7 + 4 + 9 - 4 - 4$
Jacob Heasley, 3/23
York, PA
13 (1.0)
$5 + 9 + 2 - 3 + 0$
Jacob Heasley, 3/23
York, PA
14 (1.0)
$\dfrac{7}{8 \times 1 - 6} \times 4$
Jacob Heasley, 3/23
York, PA
15 (2.2)
$0 + \dfrac{6}{.2 \times (8 - 6)}$
Steve Wilson, 4/23
Lawrence, KS
16 (1.0)
$(2 + 0) \times 8 + 9 - 9$
Dana Reigle, 4/23
Lewisburg, PA
17 (2.4)
$8 + \dfrac{6 + 2}{.\overline{8}} + 0$
Steve Wilson, 4/23
Lawrence, KS
18 (1.0)
$3 + 4 + 8 - 2 + 5$
Dana Reigle, 4/23
Lewisburg, PA
19 (1.0)
$3 \times (4 + 2) \times 1 + 1$
Dana Reigle, 4/23
Lewisburg, PA
20 (2.4)
$(7 + 0 + 6 + 7) \times .\overline{9}$
Steve Wilson, 4/23
Lawrence, KS
  21 (1.0)
$8 \times 2 + 1 - 4 + 8$
Dana Reigle, 4/23
Lewisburg, PA
22 (1.0)
$0 - 8 + 6 \times 5 \times 1$
Steve Wilson, 4/23
Lawrence, KS
23 (1.0)
$(3 + 2) \times \dfrac82 + 3$
Dana Reigle, 4/23
Lewisburg, PA
24 (1.0)
$0 + 6 - 6 \times (4 - 7)$
Dana Reigle, 5/23
Lewisburg, PA
25 (1.0)
$0 + 9 \times 3 - \dfrac84$
Dana Reigle, 5/23
Lewisburg, PA
26 (1.2)
$-4 + 6 \times (0 \times 9 + 5)$
Dana Reigle, 5/23
Lewisburg, PA
27 (2.0)
$(5 + 0) \times 5.8 - 2$
Steve Wilson, 5/23
Lawrence, KS
28 (1.0)
$2 + (3 + 1) \times 7 - 2$
Dana Reigle, 5/23
Lewisburg, PA
29 (1.2)
$- 5 + 3 - 5 + 9 \times 4$
Dana Reigle, 5/23
Lewisburg, PA
30 (2.2)
$0 + 8 \times \dfrac{1 + 2}{.8}$
Steve Wilson, 5/23
Lawrence, KS
  31 (1.0)
$4 \times 8 - 1 \times 1 \times 1$
Steve Wilson, 5/23
Lawrence, KS
32 (1.0)
$(7 + 4 + 5) \times (0 + 2)$
Steve Wilson, 5/23
Lawrence, KS
33 (1.0)
$8 \times 4 + 1 + 0 \times 2$
Steve Wilson, 5/23
Lawrence, KS
34 (1.0)
$7 + 0 + 1 \times 9 \times 3$
Dana Reigle, 6/23
Lewisburg, PA
35 (2.0)
$8 \times (5 - 2) + 11$
Dana Reigle, 6/23
Lewisburg, PA
36 (1.0)
$0 + \left(5 - \dfrac55\right) \times 9$
Steve Wilson, 6/23
Lawrence, KS
37 (2.0)
$\dfrac{64 + 4 + 6}{2}$
Dana Reigle, 6/23
Lewisburg, PA
38 (1.0)
$2 - 9 \times 4 \times (8 - 9)$
Dana Reigle, 6/23
Lewisburg, PA
39 (2.0)
$(5 - 4) \times 9 + 30$
Dana Reigle, 6/23
Lewisburg, PA
40 (1.0)
$3 \times 8 + 1 + 9 + 6$
Steve Wilson, 6/23
Lawrence, KS
  41 (2.0)
$44 - 2 - \dfrac88$
Steve Wilson, 6/23
Lawrence, KS
42 (2.2)
$10 + \dfrac{9 + 7}{.5}$
Steve Wilson, 6/23
Lawrence, KS
43 (1.0)
$6 \times 6 - 5 + 9 + 3$
Steve Wilson, 6/23
Lawrence, KS
44 (2.0)
$34 + 4 + 6 \times 1$
Dana Reigle, 7/23
Lewisburg, PA
45 (1.2)
$(-2 + 8 - 4 + 7) \times 5$
Dana Reigle, 7/23
Lewisburg, PA
46 (1.2)
$-6 + 4 + 8 \times 2 \times 3$
Steve Wilson, 10/23
Lawrence, KS
47 (2.4)
$.\overline{3} \times (7 + 8) + 6 \times 7$
Steve Wilson, 7/23
Lawrence, KS
48 (1.0)
$8 \times 3 \times (1 + 6 - 5)$
Dana Reigle, 7/23
Lewisburg, PA
49 (2.2)
$-2 + 71 - 20$
Steve Wilson, 7/23
Lawrence, KS
50 (2.6)
$\dfrac{1 + 9}{.0\overline{9} + .1}$
Steve Wilson, 7/23
Lawrence, KS
  51 (2.0)
$45 - 6 + 4 + 8$
Steve Wilson, 7/23
Lawrence, KS
52 (1.0)
$5 + 6 \times 6 + 9 + 2$
Dana Reigle, 7/23
Lewisburg, PA
53 (3.2)
$3 + 46 + 0! + 3$
Steve Wilson, 9/23
Lawrence, KS
54 (2.0)
$48 + 6 + 1 \times 0$
Steve Wilson, 7/23
Lawrence, KS
55 (2.0)
$45 + 4 \times 3 - 2$
Dana Reigle, 8/23
Lewisburg, PA
56 (1.0)
$6 \times 6 + 4 + 8 \times 2$
Dana Reigle, 8/23
Lewisburg, PA
57 (1.0)
$(1 + 3 \times 3 + 9) \times 3$
Steve Wilson, 8/23
Lawrence, KS
58 (3.2)
$-6 + 0 \times 7 + 2^6$
Steve Wilson, 9/23
Lawrence, KS
59 (2.2)
$0 + \dfrac{2}{4\%} + 9 \times 1$
Steve Wilson, 8/23
Lawrence, KS
60 (1.0)
$(4 \times 1 + 2) \times (7 + 3)$
Steve Wilson, 8/23
Lawrence, KS
  61 (2.8)
$-.7 - 2 \times .4 + \dfrac{5}{8\%}$
Steve Wilson, 9/23
Lawrence, KS
62 (3.6)
$70 + 0! - \dfrac{6}{.\overline{6}}$
Steve Wilson, 10/23
Lawrence, KS
63 (3.0)
$0 + 63 \times 1^5$
Steve Wilson, 9/23
Lawrence, KS
64 (2.2)
$.5 \times (8 + 8) \times (1 + 7)$
Steve Wilson, 9/23
Lawrence, KS
65 (2.2)
$\left( 4 + \dfrac{8}{.8} - 1 \right) \times 5$
Steve Wilson, 10/23
Lawrence, KS
66 (3.4)
$(2 + 0!)! \times (9 + 2 + 0)$
Steve Wilson, 10/23
Lawrence, KS
67 (1.0)
$9 + 6 \times (2 + 8) - 2$
Dana Reigle, 8/23
Lewisburg, PA
68 (2.8)
$\left( .\overline{9} + .2 + .5 \right) \times 40$
Steve Wilson, 10/23
Lawrence, KS
69 (2.0)
$91 - 7 - 15$
Dana Reigle, 8/23
Lewisburg, PA
70 (2.0)
$3 + 64 - 3 + 6$
Dana Reigle, 8/23
Lewisburg, PA
  71 (2.0)
$7 + 89 - 25$
Dana Reigle, 10/23
Lewisburg, PA
72 (1.0)
$(9 + 0 + 3) \times (6 + 0)$
Steve Wilson, 11/23
Lawrence, KS
73 (3.2)
$0 + 1 + (1 + 3)! \times 3$
Dana Reigle, 10/23
Lewisburg, PA
74 (3.4)
$-0! + 5 \times 3 \times (0 + 5)$
Steve Wilson, 11/23
Lawrence, KS
75 (2.2)
$\dfrac{4 + 8}{8 \times 2\%} + 0$
Steve Wilson, 11/23
Lawrence, KS
76 (1.0)
$4 \times (6 + 6 + 5 + 2)$
Dana Reigle, 9/23
Lewisburg, PA
77 (3.2)
$(1 + 3!) \times (8 + 4 - 1)$
Dana Reigle, 10/23
Lewisburg, PA
78 (1.0)
$4 \times 6 + 9 \times (5 + 1)$
Steve Wilson, 11/23
Lawrence, KS
79 (2.0)
$94 - 15 \times 1$
Dana Reigle, 9/23
Lewisburg, PA
80 (2.0)
$16 \times (0 + 9 - 4)$
Dana Reigle, 10/23
Lewisburg, PA
  81 (3.0)
$(3 \times 3)^{0 - 5 + 7}$
Steve Wilson, 11/23
Lawrence, KS
82 (2.2)
$(2 \times 7 - 0.\overline{3}) \times 6$
Steve Wilson, 12/23
Lawrence, KS
83 (2.4)
$-5 \times 7 + \dfrac{59}{.5}$
Steve Wilson, 12/23
Lawrence, KS
84 (2.0)
$91 - 9 + 5 - 3$
Dana Reigle, 11/23
Lewisburg, PA
85 (2.0)
$0 + 92 + 1 - 8$
Dana Reigle, 11/23
Lewisburg, PA
86 (2.0)
$6 + 11 \times 7 + 3$
Steve Wilson, 12/23
Lawrence, KS
87 (1.0)
$(8 + 1) \times 9 + 3 \times 2$
Dana Reigle, 11/23
Lewisburg, PA
88 (3.6)
$6 + \sqrt{\dfrac{1}{.\overline{1}}} + 79$
Steve Wilson, 12/23
Lawrence, KS
89 (3.4)
$-31 + 0 + 5! \times 1$
Dana Reigle, 11/23
Lewisburg, PA
90 (1.0)
$(1 + 8) \times \dfrac{5}{4/8}$
Dana Reigle, 11/23
Lewisburg, PA
  91 (3.2)
$0! + (7 + 4 + 4) \times 6$
Steve Wilson, 12/23
Lawrence, KS
92 (2.0)
$(2 - 3) \times 7 + 99$
Dana Reigle, 12/23
Prague, Czech Republic
93 (3.2)
$62 + 7 \times 4 + \sqrt{9}$
Steve Wilson, 1/24
Lawrence, KS
94 (1.2)
$-5 - 6 + 7 \times 3 \times 5$
Dana Reigle, 12/23
Prague, Czech Republic
95 (3.2)
$-1^8 + 8 \times (5 + 7)$
Steve Wilson, 1/24
Lawrence, KS
96 (3.2)
$(5 + 2) \times 7 \times 2 - \sqrt{4}$
Steve Wilson, 1/24
Lawrence, KS
97 (3.2)
$8 + 91 - \sqrt{2 \times 2}$
Steve Wilson, 1/24
Lawrence, KS
98 (3.4)
$7 + \dfrac{\sqrt{9}}{.3} + 81$
Steve Wilson, 1/24
Lawrence, KS
99 (3.0)
$(8 + 3^0) \times 11$
Dana Reigle, 1/24
Lewisburg, PA
100 (2.0)
$94 + 9 - 1 - 2$
Dana Reigle, 12/23
Prague, Czech Republic
  101 (2.0)
$98 + 3 \times 3 - 6$
Steve Wilson, 2/24
Lawrence, KS
102 (2.0)
$7 + 33 + 62$
Steve Wilson, 2/24
Lawrence, KS
103 (2.2)
$\dfrac{4}{4\%} + 0.6 \times 5$
Steve Wilson, 3/24
Lawrence, KS
104 (2.2)
$\dfrac{6}{6\%} + 4 + 3 \times 0$
Steve Wilson, 2/24
Lawrence, KS
105 (3.4)
$86 - 0! + \dfrac{2}{.1}$
Steve Wilson, 2/24
Lawrence, KS
106 (2.4)
$3 \times .\overline{9} \times 4 + 94$
Steve Wilson, 6/24
Lawrence, KS
107 (1.2)
$(-6 + 3 \times 9) \times 5 + 2$
Dana Reigle, 2/24
Lewisburg, PA
108 (3.0)
$2^4 \times 7 + 3 - 7$
Dana Reigle, 1/24
Lewisburg, PA
109 (3.6)
$1 \times 9 + \dfrac{0!^7}{0!\%}$
Steve Wilson, 3/24
Lawrence, KS
110 (2.2)
$2 \times (-1 + 7) + 98$
Dana Reigle, 2/24
Lewisburg, PA
  111 (3.0)
$(6^0 + 9 \times 4) \times 3$
Dana Reigle, 2/24
Lewisburg, PA
112 (1.0)
$7 \times (0 + 2 + 7 + 7)$
Dana Reigle, 2/24
Lewisburg, PA
113 (3.2)
$0 + 5 + 3! \times 9 \times 2$
Steve Wilson, 6/24
Lawrence, KS
114 (2.0)
$1 + 7 \times 17 - 6$
Dana Reigle, 2/24
Lewisburg, PA
115 (3.2)
$2 \times 9 \times 3! + 1 \times 7$
Steve Wilson, 3/24
Lawrence, KS
116 (2.2)
$-6 + 7 + 5 \times 23$
Steve Wilson, 3/24
Lawrence, KS
117 (3.6)
$\dfrac{84}{.\overline{6}} - 7 - \sqrt{4}$
Steve Wilson, 4/24
Lawrence, KS
118 (2.0)
$(8 + 1) \times 8 + 46$
Dana Reigle, 3/24
Lewisburg, PA
119 (1.0)
$7 + (6 + 6) \times 9 + 4$
Dana Reigle, 3/24
Lewisburg, PA
120 (3.2)
$0 + 5! \times 1 \times (3 - 2)$
Steve Wilson, 4/24
Lawrence, KS
  121 (3.6)
$0! + 0 + \dfrac{(0! + 5)!}{6}$
Steve Wilson, 4/24
Lawrence, KS
122 (3.6)
$\sqrt{8 + 1} + (-2 + 7)! - 1$
Steve Wilson, 4/24
Lawrence, KS
123 (2.0)
$45 + 26 \times 3$
Steve Wilson, 4/24
Lawrence, KS
124 (3.2)
$(5 \times 6 + 0!) \times \dfrac82$
Dana Reigle, 4/24
Lewisburg, PA
125 (3.6)
$\dfrac{7}{7\pm \times \sqrt{8^{-5+7}} \phantom8}$
Steve Wilson, 5/24
Lawrence, KS
126 (2.0)
$7 \times (13 - 4) \times 2$
Dana Reigle, 4/24
Lewisburg, PA
127 (3.0)
$(7 - 5)^7 + 7 - 8$
Steve Wilson, 6/24
Lawrence, KS
128 (3.4)
$\left(\dfrac{\sqrt{9}}{6}\right)^{0! - 9 + 1}$
Steve Wilson, 5/24
Lawrence, KS
129 (2.0)
$73 + 63 - 7$
Dana Reigle, 4/24
Lewisburg, PA
130 (3.4)
$17 \times 8 - (\sqrt{7 + 2})!$
Steve Wilson, 5/24
Lawrence, KS
  131 (3.4)
$-1 - 4 + 68 \times \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
132 (3.8)
$4 \times (-0! + 9) + \dfrac{0!}{1\%}$
Steve Wilson, 5/24
Lawrence, KS
133 (2.0)
$22 \times 4 + 9 \times 5$
Dana Reigle, 5/24
Lewisburg, PA
134 (3.2)
$34 + \dfrac{3^0}{1\%}$
Steve Wilson, 6/24
Lawrence, KS
135 (1.0)
$(4 \times 6 - 5 - 4) \times 9$
Dana Reigle, 5/24
Lewisburg, PA
136 (3.2)
$(5 + 8) \times (5 + 3!) - 7$
Steve Wilson, 6/24
Lawrence, KS
137 (3.2)
$10 + 5! + 0 + 7$
Dana Reigle, 6/24
Lewisburg, PA
138 (3.4)
$9 \times (2 + 2 \times 7) - (\sqrt{9})!$
Steve Wilson, 7/24
Lawrence, KS
139 (3.4)
$6 + 8 + \sqrt{9} + 2 + 5!$
Dana Reigle, 6/24
Lewisburg, PA
140 (3.2)
$(8 - \sqrt{9} + 23) \times 5$
Dana Reigle, 6/24
Lewisburg, PA
  141 (3.4)
$\dfrac{4^2 - 0!}{.1} - 9$
Steve Wilson, 7/24
Lawrence, KS
142 (3.2)
$(9 - 5)! \times 6 - 1 - 1$
Steve Wilson, 7/24
Lawrence, KS
143 (3.6)
$2 \times 12 \times (\sqrt{9})! - 0!$
Steve Wilson, 7/24
Lawrence, KS
144 (3.2)
$(21 + \sqrt{9}) \times 6 + 0$
Steve Wilson, 7/24
Lawrence, KS
145 (3.8)
$\sqrt{\left(\dfrac{8}{.\overline{6}}\right)^4} + (0!)^3$
Steve Wilson, 8/24
Lawrence, KS
146 (3.8)
$\sqrt{4} + \sqrt{4} \times 1 \times \dfrac{8}{.\overline{1}}$
Steve Wilson, 8/24
Lawrence, KS
147 (3.4)
$\sqrt[.5]{\sqrt{9} + 8 + 1} + 3$
Steve Wilson, 8/24
Lawrence, KS
148 (2.0)
$62 + 9 + 77$
Dana Reigle, 7/24
Lewisburg, PA
149 (3.2)
$\sqrt{4} + 7 \times 7 \times 1 \times 3$
Dana Reigle, 7/24
Lewisburg, PA
150 (2.2)
$0 \times 9 + \dfrac{9}{6\%} + 0$
Steve Wilson, 8/24
Lawrence, KS
  151 (3.4)
$51 + \dfrac{8}{(7 + 0!)\%}$
Steve Wilson, 8/24
Lawrence, KS
152 (3.2)
$7^2 + \dfrac{1}{1\%} + 3$
Kevin Schwarz, 8/24
Olathe, KS
153 (3.2)
$(4 + 9 + \sqrt{9}) \times 9 + 9$
Kevin Schwarz, 8/24
Olathe, KS
154 (1.0)
$(9 + 9) \times 8 + 3 + 7$
Kevin Schwarz, 8/24
Olathe, KS
155 (3.6)
$2 \times .\overline{9} \times 78 - 0!$
Steve Wilson, 9/24
Lawrence, KS
156 (3.2)
$4! \times 9 - 9 - 51$
Kevin Schwarz, 8/24
Olathe, KS
157 (3.2)
$0! + (5 \times 9 + 7) \times 3$
Kevin Schwarz, 8/24
Olathe, KS
158 (3.2)
$1^7 + \dfrac{3}{2\%} + 8$
Steve Wilson, 9/24
Lawrence, KS
159 (3.4)
$160 - (.\overline{9})^6$
Steve Wilson, 9/24
Lawrence, KS
160 (2.4)
$(3 + 1) \times 8 \times 5 \times .\overline{9}$
Steve Wilson, 11/24
Lawrence, KS
  161 (3.4)
$5! - 0! - 2 + 44$
Dana Reigle, 8/24
Lewisburg, PA
162 (3.8)
$\left( -.5 + .9 + \sqrt{4^5}\right) \times 5$
Steve Wilson, 9/24
Lawrence, KS
163 (3.6)
$\sqrt{\sqrt{3^4}} \times 6 \times 9 + 0!$
Steve Wilson, 9/24
Lawrence, KS
164 (3.6)
$(83 - 0!) \times \sqrt{-2 + 6}$
Kevin Schwarz, 9/24
Olathe, KS
165 (3.8)
$42 + 5! + \sqrt{\dfrac{2}{.\overline{2}}}$
Steve Wilson, 10/24
Lawrence, KS
166 (3.4)
$\dfrac{(3 \times 0)! + 82}{.5}$
Kevin Schwarz, 9/24
Olathe, KS
167 (2.2)
$\dfrac{334}{-4 + 6}$
Kevin Schwarz, 9/24
Olathe, KS
168 (3.2)
$8 \times (5 + 0! + 3 \times 5)$
Dana Reigle, 10/24
Lewisburg, PA
169 (3.4)
$(2 \times 6 + 1)^{(\sqrt{9})!/3}$
Steve Wilson, 10/24
Lawrence, KS
170 (2.2)
$\dfrac{1}{.1} \times (8 + 8 + 1)$
Steve Wilson, 10/24
Lawrence, KS
  171 (3.4)
$71 + \dfrac{0!}{1.0\%}$
Dana Reigle, 9/24
Lewisburg, PA
172 (3.8)
$\dfrac{0!}{0!\%} + (3 + 1)! \times 3$
Steve Wilson, 10/24
Lawrence, KS
173 (2.2)
$\dfrac{78}{.3} - 87$
Steve Wilson, 11/24
Lawrence, KS
174 (3.8)
$\sqrt{5!^2} + \dfrac{8}{.\overline{8}} \times 6$
Steve Wilson, 10/24
Lawrence, KS
175 (3.4)
$\left(\left(5 \times \dfrac87\right)\pm\right)^{\phantom8 5 - 3!}$
Steve Wilson, 11/24
Lawrence, KS
176 (3.6)
$\dfrac{3!}{(2 + 0!)\%} - 8 \times 3$
Steve Wilson, 11/24
Lawrence, KS
177 (3.8)
$\dfrac{8}{.\overline{1} \times .4} - 2 - 0!$
Steve Wilson, 11/24
Lawrence, KS
178 (4.6)
$\sin(6!^\circ) + 171 + 7$
Steve Wilson, 12/24
Lawrence, KS
179 (3.6)
$-7 + 6 + \dfrac{6!}{\sqrt{9} + 1}$
Steve Wilson, 12/24
Lawrence, KS
180 (3.4)
$4! \times 7 + (3 + 0!) \times 3$
Kevin Schwarz, 11/24
Olathe, KS
  181 (2.2)
$(5 - 98) \times (-2) - 5$
Kevin Schwarz, 10/25
Olathe, KS
182 (3.4)
$3! - 4 + 90 \times \sqrt{4}$
Dana Reigle, 11/24
Lewisburg, PA
183 (3.2)
$2 + 8 \times 7 + 5 + 5!$
Dana Reigle, 11/24
Lewisburg, PA
184 (2.0)
$46 \times (8 - 7 + 3)$
Steve Wilson, 12/24
Lawrence, KS
185 (1.0)
$(1 - (1 - 5) \times 9) \times 5$
Dana Reigle, 11/24
Lewisburg, PA
186 (2.0)
$6 \times 28 + 6 \times 3$
Kevin Schwarz, 10/24
Olathe, KS
187 (2.0)
$8 + 8 \times 23 - 5$
Kevin Schwarz, 10/24
Olathe, KS
188 (3.4)
$-3 + 78 - 7 + 5!$
Steve Wilson, 12/24
Lawrence, KS
189 (1.2)
$9 \times ((-3 + 7) \times 5 + 1)$
Dana Reigle, 12/24
Lewisburg, PA
190 (2.2)
$95 \times \left(\dfrac{7}{.7} - 8\right)$
Steve Wilson, 1/25
Lawrence, KS
  191 (3.8)
$185 + \left(\sqrt{\dfrac{7}{.\overline{7}}}\right)!$
Steve Wilson, 1/25
Lawrence, KS
192 (2.2)
$\dfrac{80}{.5} + 32$
Steve Wilson, 2/25
Lawrence, KS
193 (2.0)
$171 + 22$
Kevin Schwarz, 12/24
Olathe, KS
194 (3.4)
$-6 + 80 + \dfrac{6!}{6}$
Dana Reigle, 12/24
Lewisburg, PA
195 (3.8)
$1 - 3! + \dfrac{0! + 0!}{1\%}$
Steve Wilson, 1/25
Lawrence, KS
196 (2.0)
$(9 + 27 - 8) \times 7$
Steve Wilson, 1/25
Lawrence, KS
197 (3.6)
$\dfrac{66}{\sqrt{.\overline{1}}} - 1 \times 1$
Steve Wilson, 1/25
Lawrence, KS
198 (3.2)
$9 \times (5 + 9 - 0! + 9)$
Dana Reigle, 12/24
Lewisburg, PA
199 (2.2)
$\dfrac{2}{1\%} - \dfrac{6 - 4}{2}$
Kevin Schwarz, 1/25
Olathe, KS
200 (2.6)
$0 + \dfrac{1.\overline{9}}{(-8 + 9)\%}$
Kevin Schwarz, 1/25
Olathe, KS
  201 (1.0)
$3 \times (8 \times (0 + 9) - 5)$
Dana Reigle, 2/25
Lewisburg, PA
202 (3.4)
$2 \times \left(\dfrac{5}{(7 - 2)\%} + 0!\right)$
Steve Wilson, 2/25
Lawrence, KS
203 (3.8)
$-1 + \dfrac{0!}{.6} \times 5! + 4$
Steve Wilson, 2/25
Lawrence, KS
204 (2.4)
$8 \times (-.5 + 8 + 6 \times 3)$
Steve Wilson, 2/25
Lawrence, KS
205 (4.6)
$27 \times 8 - 8 - \ln\sqrt{\exp 6}$
Steve Wilson, 3/25
Lawrence, KS
206 (2.2)
$5 + \dfrac{9 + 3}{6\%} + 1$
Dana Reigle, 1/25
Lewisburg, PA
207 (3.2)
$5! + 3 + 3 + 81$
Steve Wilson, 6/25
Lawrence, KS
208 (3.4)
$8 \times \left(27 - \dfrac{(\sqrt{9})!}{6}\right)$
Dana Reigle, 1/25
Lewisburg, PA
209 (3.4)
$(8 - 2)^3 - 0! - 3!$
Steve Wilson, 2/25
Lawrence, KS
210 (3.6)
$\dfrac{0!}{.1} \times \sqrt{9} \times (5 + 2)$
Steve Wilson, 3/25
Lawrence, KS
  211 (3.4)
$(0! + 3) \times 53 - 0!$
Dana Reigle, 2/25
Lewisburg, PA
212 (3.6)
$1.8 \times 5! + 2 - (\sqrt{9})!$
Steve Wilson, 3/25
Lawrence, KS
213 (2.6)
$6 \times (8 \times 9 - .\overline{9}) \times .5$
Steve Wilson, 3/25
Lawrence, KS
214 (3.4)
$7 + 7 + \dfrac{3!}{6\%} \times 2$
Steve Wilson, 3/25
Lawrence, KS
215 (1.2)
$(-2 + 5 \times 9) \times (9 - 4)$
Kevin Schwarz, 3/25
Olathe, KS
216 (1.0)
$1 \times 3 \times 8 \times 9 \times 1$
Dana Reigle, 2/25
Lewisburg, PA
217 (2.4)
$2 \times (4 - .9) \times \dfrac{7}{.2}$
Kevin Schwarz, 2/25
Olathe, KS
218 (3.4)
$\dfrac{1 \times 7}{7\%} + 5! - 2$
Steve Wilson, 4/25
Lawrence, KS
219 (2.8)
$(8 \times 3 - .\overline{4} + .\overline{7}) \times 9$
Steve Wilson, 6/25
Lawrence, KS
220 (3.4)
$\dfrac{1^3}{1\%} + 5! \times 1$
Steve Wilson, 4/25
Lawrence, KS
  221 (3.6)
$\dfrac{5}{5\%} + \sqrt{\sqrt{(7 + 4)^8}}$
Steve Wilson, 4/25
Lawrence, KS
222 (2.0)
$(57 - 2) \times 4 + 2$
Steve Wilson, 6/25
Lawrence, KS
223 (2.2)
$(45 - .4) \times 1 \times 5$
Steve Wilson, 4/25
Lawrence, KS
224 (3.2)
$(0! + 6 + 9) \times (5 + 9)$
Steve Wilson, 4/25
Lawrence, KS
225 (3.2)
$\dfrac{50}{\sqrt{\dfrac82}} \times 9$
Steve Wilson, 8/25
Lawrence, KS
226 (3.0)
$(5 \times 3)^{3-1} + 1$
Steve Wilson, 8/25
Lawrence, KS
227 (4.8)
$\dfrac{6!}{\sec\arctan\sqrt{8}} - 6^1 - 7$
Steve Wilson, 6/25
Lawrence, KS
228 (3.8)
$\dfrac{-(2 - 7 + 8)! + 5!}{.5}$
Steve Wilson, 7/25
Lawrence, KS
229 (3.6)
$\dfrac{8 + 8 + (\sqrt{9})\% + 0}{7\%}$
Steve Wilson, 5/25
Lawrence, KS
230 (3.2)
$5 \times (0! + 9 \times (8 - 3))$
Steve Wilson, 7/25
Lawrence, KS
  231 (3.2)
$81 + 75 \times \sqrt{4}$
Dana Reigle, 4/25
Lewisburg, PA
232 (2.0)
$6 \times 37 + 4 + 6$
Steve Wilson, 5/25
Lawrence, KS
233 (3.2)
$\dfrac{-.4 + 9 \times .3}{.\overline{9}\%} + 3$
Steve Wilson, 5/25
Lawrence, KS
234 (3.4)
$1 - 9 + 2 + 5! + 5!$
Steve Wilson, 5/25
Lawrence, KS
235 (3.6)
$(-0! + 60) \times 4 - 0!$
Steve Wilson, 5/25
Lawrence, KS
236 (2.0)
$0 + 9 \times 27 - 7$
Steve Wilson, 7/25
Lawrence, KS
237 (4.2)
$-0! + \sqrt{.\overline{1}} \times (6! - 7 + 1)$
Steve Wilson, 7/25
Lawrence, KS
238 (4.0)
$\dfrac{1 \times (3!)!}{\sqrt{9}} - 0! - 0!$
Steve Wilson, 7/25
Lawrence, KS
239 (1.2)
$-9 - 8 + 4 \times 8 \times 8$
Dana Reigle, 5/25
Lewisburg, PA
240 (2.2)
$240 \times (-1 + 2)$
Kevin Schwarz, 4/25
Olathe, KS
  241 (2.4)
$-8 + .5 \times 83 \times 6$
Steve Wilson, 6/25
Lawrence, KS
242 (3.2)
$-1 + 6 \times 0 + 3^5$
Dana Reigle, 6/25
Lewisburg, PA
243 (3.8)
$\sqrt[.6/3]{\sqrt{\dfrac{7 + 0}{.\overline{7}}}}$
Steve Wilson, 10/25
Lawrence, KS
244 (3.8)
$-6 + \dfrac{6 - 0!}{(1 + 0!)\%}$
Steve Wilson, 8/25
Lawrence, KS
245 (3.8)
$\dfrac{4! + .7}{.1} - 0! - 1$
Steve Wilson, 9/25
Lawrence, KS
246 (2.6)
$\dfrac{-8\% + 1 \times 9 - 4}{2\%}$
Steve Wilson, 8/25
Lawrence, KS
247 (3.2)
$(9 \times 5 + 5) \times 5 - \sqrt{9}$
Steve Wilson, 10/25
Lawrence, KS
248 (3.8)
$\dfrac{6! \times 1}{\sqrt{9}} + 8 \times .\overline{9}$
Steve Wilson, 9/25
Lawrence, KS
249 (3.2)
$(4\pm)^{6-7} + 6 - 7$
Steve Wilson, 9/25
Lawrence, KS
250 (3.6)
$-8 + \sqrt{-3 + 7} + 4^4$
Steve Wilson, 9/25
Lawrence, KS
  251 (3.2)
$-9 + 4 + 4 \times 8^2$
Kevin Schwarz, 8/25
Olathe, KS
252 (1.0)
$\left(\dfrac55 + 3\right) \times 7 \times 9$
Bee Moua, 8/25
Leola, PA
253 (3.4)
$\dfrac{7}{7 \times 4\pmf} + \sqrt{7 + 2}$
Steve Wilson, 9/25
Lawrence, KS
254 (3.2)
$6 + 8 \times (4! + 7) \times 1$
Bee Moua, 9/25
Leola, PA
255 (3.6)
$-(0!) + 4^{(0! - 4 + 7)}$
Bee Moua, 9/25
Leola, PA
256 (2.0)
$(5 + 3 - 4) \times 64$
Kevin Schwarz, 7/25
Olathe, KS
257 (3.4)
$6 + \dfrac{2}{0.8\%} + 0!$
Kevin Schwarz, 9/25
Olathe, KS
258 (3.2)
$4 \times 66 - 8 + \sqrt{4}$
Kevin Schwarz, 9/25
Olathe, KS
259 (2.0)
$259 + 0 \times 6$
Kevin Schwarz, 7/25
Olathe, KS
260 (1.0)
$(9 + 4) \times (9 + 1) \times 2$
Dana Reigle, 8/25
Lewisburg, PA
  261 (3.0)
$9 \times (3^3 - 1 + 3)$
Kevin Schwarz, 9/25
Olathe, KS
262 (4.6)
$6 + (7 + 7 - \log(0!\%))^2$
Steve Wilson, 10/25
Lawrence, KS
263 (3.4)
$8 \times \sqrt{9} \times (8 + \sqrt{9}) - 1$
Bee Moua, 9/25
Leola, PA
264 (2.2)
$\dfrac{5}{2\%} + 10 + 4$
Dana Reigle, 9/25
Lewisburg, PA
265 (3.2)
$7 + 5! \times 2.1 + 6$
Steve Wilson, 10/25
Lawrence, KS
266 (4.6)
$2 \times \log(0!\%) + 5 \times 6 \times 9$
Kevin Schwarz, 10/25
Olathe, KS
267 (4.4)
$(66.0 + \sinh\ln 2) \times 4$
Steve Wilson, 11/25
Lawrence, KS
268 (4.0)
$(0! - 5) \times 8 + \dfrac{0!}{.\overline{3}\%}$
Steve Wilson, 11/25
Lawrence, KS
269 (4.6)
$(8 + \antilog 1)$
$\phantom. \times (5 + \antilog(0!)) - 1$

Steve Wilson, 11/25
Lawrence, KS
270 (1.0)
$9 \times 3 \times 5 \times (1 + 1)$
Bee Moua, 8/25
Leola, PA
  271 (2.0)
$2 + 5 + 33 \times 8$
Dana Reigle, 10/25
Lewisburg, PA
272 (4.8)
$2 \times 4 \times (30 - \log(0!\%\%))$
Steve Wilson, 11/25
Lawrence, KS
273 (3.4)
$3 \times (\sqrt{5 \times 5})! - 87$
Steve Wilson, 11/25
Lawrence, KS
274 (3.6)
$\dfrac{6}{4\pm + .02\phantom8} +4!$
Bee Moua, 11/25
Leola, PA
275 (3.2)
$7 + 4 \times (\sqrt{9} + 64)$
Bee Moua, 10/25
Leola, PA
276 (3.2)
$(7 \times 3 + 2) \times (6 + 3!)$
Bee Moua, 11/25
Leola, PA
277 (3.4)
$\dfrac{\sqrt{9}}{1\%} - 4 - 19$
Steve Wilson, 12/25
Lawrence, KS
278 (2.4)
$.\overline{9} \times (272 + 6)$
Steve Wilson, 12/25
Lawrence, KS
279 (3.2)
$(0! + 4 + 26) \times 9$
Dana Reigle, 11/25
Lewisburg, PA
280 (2.2)
$9 \times (2 + 2) \times \dfrac{7}{.9}$
Kevin Schwarz, 11/25
Olathe, KS
  281 (4.6)
$\cos(6!^\circ) + 7 \times 8 \times (2 + 3)$
Steve Wilson, 12/25
Lawrence, KS
282 (2.2)
$5 \times (.4 + 7 \times 8 \times 1)$
Kevin Schwarz, 11/25
Olathe, KS
283 (4.6)
$\sqrt{\antilog 6} + 3$
$\phantom. - 6! + 0 + 0$

Steve Wilson, 12/25
Lawrence, KS
284 (2.2)
$\dfrac{9}{-3} + 41 \times 7$
Kevin Schwarz, 11/25
Olathe, KS
285 (3.6)
$-2 - 1 + 6! \times .4 \times 1$
Steve Wilson, 12/25
Lawrence, KS
21992 45863 15030 289 (3.2)
$286 + \sqrt{1 + 8}$
Dana Reigle, 11/25
Lewisburg, PA
290 (3.2)
$297 - \sqrt{4} - 5$
Dana Reigle, 11/25
Lewisburg, PA
  55706 74983 85054 94588 58692 69956 90927 21079 75093 02955

Page 1 (1+), ... Index to All Pages.