\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)

Integermania!

Digits of Pi

This Integermania problem is a bit different than the others, as different digits will be used to create each of the integers. In particular, the following two ADDITIONAL rules must be met:

Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400).

                    0 (1.0)
$0 + 0 + 0 + 0 \times 3.$
Steve Wilson, 3/23
Lawrence, KS
  1 (1.0)
$\dfrac{1 \times 4 + 1 \times 5}{9}$
Steve Wilson, 3/23
Lawrence, KS
2 (1.0)
$\dfrac{2 \times 6 - 5 + 3}{5}$
Dana Reigle, 3/23
Lewisburg, PA
3 (1.0)
$(8 + 9 - 7 - 9) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
4 (1.0)
$2 \times 3 + 8 - 4 - 6$
Dana Reigle, 3/23
Lewisburg, PA
5 (1.0)
$2 - (6 - 4 - 3) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
6 (1.0)
$(8 + 3) \times 2 - 7 - 9$
Dana Reigle, 3/23
Lewisburg, PA
7 (1.0)
$5 + 0 + 2 + 8 - 8$
Steve Wilson, 3/23
Lawrence, KS
8 (1.0)
$4 + 1 + 9 - 7 + 1$
Steve Wilson, 3/23
Lawrence, KS
9 (1.0)
$6 + \dfrac93 + 9 - 9$
Steve Wilson, 3/23
Lawrence, KS
10 (1.0)
$(3 + 7) + (5 + 1) \times 0$
Jacob Heasley, 3/23
York, PA
  11 (1.0)
$\dfrac{5 \times 8}{2} + 0 - 9$
Jacob Heasley, 3/23
York, PA
12 (1.0)
$7 + 4 + 9 - 4 - 4$
Jacob Heasley, 3/23
York, PA
13 (1.0)
$5 + 9 + 2 - 3 + 0$
Jacob Heasley, 3/23
York, PA
14 (1.0)
$\dfrac{7}{8 \times 1 - 6} \times 4$
Jacob Heasley, 3/23
York, PA
15 (2.2)
$0 + \dfrac{6}{.2 \times (8 - 6)}$
Steve Wilson, 4/23
Lawrence, KS
16 (1.0)
$(2 + 0) \times 8 + 9 - 9$
Dana Reigle, 4/23
Lewisburg, PA
17 (2.4)
$8 + \dfrac{6 + 2}{.\overline{8}} + 0$
Steve Wilson, 4/23
Lawrence, KS
18 (1.0)
$3 + 4 + 8 - 2 + 5$
Dana Reigle, 4/23
Lewisburg, PA
19 (1.0)
$3 \times (4 + 2) \times 1 + 1$
Dana Reigle, 4/23
Lewisburg, PA
20 (2.4)
$(7 + 0 + 6 + 7) \times .\overline{9}$
Steve Wilson, 4/23
Lawrence, KS
  21 (1.0)
$8 \times 2 + 1 - 4 + 8$
Dana Reigle, 4/23
Lewisburg, PA
22 (1.0)
$0 - 8 + 6 \times 5 \times 1$
Steve Wilson, 4/23
Lawrence, KS
23 (1.0)
$(3 + 2) \times \dfrac82 + 3$
Dana Reigle, 4/23
Lewisburg, PA
24 (1.0)
$0 + 6 - 6 \times (4 - 7)$
Dana Reigle, 5/23
Lewisburg, PA
25 (1.0)
$0 + 9 \times 3 - \dfrac84$
Dana Reigle, 5/23
Lewisburg, PA
26 (1.2)
$-4 + 6 \times (0 \times 9 + 5)$
Dana Reigle, 5/23
Lewisburg, PA
27 (2.0)
$(5 + 0) \times 5.8 - 2$
Steve Wilson, 5/23
Lawrence, KS
28 (1.0)
$2 + (3 + 1) \times 7 - 2$
Dana Reigle, 5/23
Lewisburg, PA
29 (1.2)
$- 5 + 3 - 5 + 9 \times 4$
Dana Reigle, 5/23
Lewisburg, PA
30 (2.2)
$0 + 8 \times \dfrac{1 + 2}{.8}$
Steve Wilson, 5/23
Lawrence, KS
  31 (1.0)
$4 \times 8 - 1 \times 1 \times 1$
Steve Wilson, 5/23
Lawrence, KS
32 (1.0)
$(7 + 4 + 5) \times (0 + 2)$
Steve Wilson, 5/23
Lawrence, KS
33 (1.0)
$8 \times 4 + 1 + 0 \times 2$
Steve Wilson, 5/23
Lawrence, KS
34 (1.0)
$7 + 0 + 1 \times 9 \times 3$
Dana Reigle, 6/23
Lewisburg, PA
35 (2.0)
$8 \times (5 - 2) + 11$
Dana Reigle, 6/23
Lewisburg, PA
36 (1.0)
$0 + \left(5 - \dfrac55\right) \times 9$
Steve Wilson, 6/23
Lawrence, KS
37 (2.0)
$\dfrac{64 + 4 + 6}{2}$
Dana Reigle, 6/23
Lewisburg, PA
38 (1.0)
$2 - 9 \times 4 \times (8 - 9)$
Dana Reigle, 6/23
Lewisburg, PA
39 (2.0)
$(5 - 4) \times 9 + 30$
Dana Reigle, 6/23
Lewisburg, PA
40 (1.0)
$3 \times 8 + 1 + 9 + 6$
Steve Wilson, 6/23
Lawrence, KS
  41 (2.0)
$44 - 2 - \dfrac88$
Steve Wilson, 6/23
Lawrence, KS
42 (2.2)
$10 + \dfrac{9 + 7}{.5}$
Steve Wilson, 6/23
Lawrence, KS
43 (1.0)
$6 \times 6 - 5 + 9 + 3$
Steve Wilson, 6/23
Lawrence, KS
44 (2.0)
$34 + 4 + 6 \times 1$
Dana Reigle, 7/23
Lewisburg, PA
45 (1.2)
$(-2 + 8 - 4 + 7) \times 5$
Dana Reigle, 7/23
Lewisburg, PA
46 (1.2)
$-6 + 4 + 8 \times 2 \times 3$
Steve Wilson, 10/23
Lawrence, KS
47 (2.4)
$.\overline{3} \times (7 + 8) + 6 \times 7$
Steve Wilson, 7/23
Lawrence, KS
48 (1.0)
$8 \times 3 \times (1 + 6 - 5)$
Dana Reigle, 7/23
Lewisburg, PA
49 (2.2)
$-2 + 71 - 20$
Steve Wilson, 7/23
Lawrence, KS
50 (2.6)
$\dfrac{1 + 9}{.0\overline{9} + .1}$
Steve Wilson, 7/23
Lawrence, KS
  51 (2.0)
$45 - 6 + 4 + 8$
Steve Wilson, 7/23
Lawrence, KS
52 (1.0)
$5 + 6 \times 6 + 9 + 2$
Dana Reigle, 7/23
Lewisburg, PA
53 (3.2)
$3 + 46 + 0! + 3$
Steve Wilson, 9/23
Lawrence, KS
54 (2.0)
$48 + 6 + 1 \times 0$
Steve Wilson, 7/23
Lawrence, KS
55 (2.0)
$45 + 4 \times 3 - 2$
Dana Reigle, 8/23
Lewisburg, PA
56 (1.0)
$6 \times 6 + 4 + 8 \times 2$
Dana Reigle, 8/23
Lewisburg, PA
57 (1.0)
$(1 + 3 \times 3 + 9) \times 3$
Steve Wilson, 8/23
Lawrence, KS
58 (3.2)
$-6 + 0 \times 7 + 2^6$
Steve Wilson, 9/23
Lawrence, KS
59 (2.2)
$0 + \dfrac{2}{4\%} + 9 \times 1$
Steve Wilson, 8/23
Lawrence, KS
60 (1.0)
$(4 \times 1 + 2) \times (7 + 3)$
Steve Wilson, 8/23
Lawrence, KS
  61 (2.8)
$-.7 - 2 \times .4 + \dfrac{5}{8\%}$
Steve Wilson, 9/23
Lawrence, KS
62 (3.6)
$70 + 0! - \dfrac{6}{.\overline{6}}$
Steve Wilson, 10/23
Lawrence, KS
63 (3.0)
$0 + 63 \times 1^5$
Steve Wilson, 9/23
Lawrence, KS
64 (2.2)
$.5 \times (8 + 8) \times (1 + 7)$
Steve Wilson, 9/23
Lawrence, KS
65 (2.2)
$\left( 4 + \dfrac{8}{.8} - 1 \right) \times 5$
Steve Wilson, 10/23
Lawrence, KS
66 (3.4)
$(2 + 0!)! \times (9 + 2 + 0)$
Steve Wilson, 10/23
Lawrence, KS
67 (1.0)
$9 + 6 \times (2 + 8) - 2$
Dana Reigle, 8/23
Lewisburg, PA
68 (2.8)
$\left( .\overline{9} + .2 + .5 \right) \times 40$
Steve Wilson, 10/23
Lawrence, KS
69 (2.0)
$91 - 7 - 15$
Dana Reigle, 8/23
Lewisburg, PA
70 (2.0)
$3 + 64 - 3 + 6$
Dana Reigle, 8/23
Lewisburg, PA
  71 (2.0)
$7 + 89 - 25$
Dana Reigle, 10/23
Lewisburg, PA
72 (1.0)
$(9 + 0 + 3) \times (6 + 0)$
Steve Wilson, 11/23
Lawrence, KS
73 (3.2)
$0 + 1 + (1 + 3)! \times 3$
Dana Reigle, 10/23
Lewisburg, PA
74 (3.4)
$-0! + 5 \times 3 \times (0 + 5)$
Steve Wilson, 11/23
Lawrence, KS
75 (2.2)
$\dfrac{4 + 8}{8 \times 2\%} + 0$
Steve Wilson, 11/23
Lawrence, KS
76 (1.0)
$4 \times (6 + 6 + 5 + 2)$
Dana Reigle, 9/23
Lewisburg, PA
77 (3.2)
$(1 + 3!) \times (8 + 4 - 1)$
Dana Reigle, 10/23
Lewisburg, PA
78 (1.0)
$4 \times 6 + 9 \times (5 + 1)$
Steve Wilson, 11/23
Lawrence, KS
79 (2.0)
$94 - 15 \times 1$
Dana Reigle, 9/23
Lewisburg, PA
80 (2.0)
$16 \times (0 + 9 - 4)$
Dana Reigle, 10/23
Lewisburg, PA
  81 (3.0)
$(3 \times 3)^{0 - 5 + 7}$
Steve Wilson, 11/23
Lawrence, KS
82 (2.2)
$(2 \times 7 - 0.\overline{3}) \times 6$
Steve Wilson, 12/23
Lawrence, KS
83 (2.4)
$-5 \times 7 + \dfrac{59}{.5}$
Steve Wilson, 12/23
Lawrence, KS
84 (2.0)
$91 - 9 + 5 - 3$
Dana Reigle, 11/23
Lewisburg, PA
85 (2.0)
$0 + 92 + 1 - 8$
Dana Reigle, 11/23
Lewisburg, PA
86 (2.0)
$6 + 11 \times 7 + 3$
Steve Wilson, 12/23
Lawrence, KS
87 (1.0)
$(8 + 1) \times 9 + 3 \times 2$
Dana Reigle, 11/23
Lewisburg, PA
88 (3.6)
$6 + \sqrt{\dfrac{1}{.\overline{1}}} + 79$
Steve Wilson, 12/23
Lawrence, KS
89 (3.4)
$-31 + 0 + 5! \times 1$
Dana Reigle, 11/23
Lewisburg, PA
90 (1.0)
$(1 + 8) \times \dfrac{5}{4/8}$
Dana Reigle, 11/23
Lewisburg, PA
  91 (3.2)
$0! + (7 + 4 + 4) \times 6$
Steve Wilson, 12/23
Lawrence, KS
92 (2.0)
$(2 - 3) \times 7 + 99$
Dana Reigle, 12/23
Prague, Czech Republic
93 (3.2)
$62 + 7 \times 4 + \sqrt{9}$
Steve Wilson, 1/24
Lawrence, KS
94 (1.2)
$-5 - 6 + 7 \times 3 \times 5$
Dana Reigle, 12/23
Prague, Czech Republic
95 (3.2)
$-1^8 + 8 \times (5 + 7)$
Steve Wilson, 1/24
Lawrence, KS
96 (3.2)
$(5 + 2) \times 7 \times 2 - \sqrt{4}$
Steve Wilson, 1/24
Lawrence, KS
97 (3.2)
$8 + 91 - \sqrt{2 \times 2}$
Steve Wilson, 1/24
Lawrence, KS
98 (3.4)
$7 + \dfrac{\sqrt{9}}{.3} + 81$
Steve Wilson, 1/24
Lawrence, KS
99 (3.0)
$(8 + 3^0) \times 11$
Dana Reigle, 1/24
Lewisburg, PA
100 (2.0)
$94 + 9 - 1 - 2$
Dana Reigle, 12/23
Prague, Czech Republic
  101 (2.0)
$98 + 3 \times 3 - 6$
Steve Wilson, 2/24
Lawrence, KS
102 (2.0)
$7 + 33 + 62$
Steve Wilson, 2/24
Lawrence, KS
103 (2.2)
$\dfrac{4}{4\%} + 0.6 \times 5$
Steve Wilson, 3/24
Lawrence, KS
104 (2.2)
$\dfrac{6}{6\%} + 4 + 3 \times 0$
Steve Wilson, 2/24
Lawrence, KS
105 (3.4)
$86 - 0! + \dfrac{2}{.1}$
Steve Wilson, 2/24
Lawrence, KS
106 (2.4)
$3 \times .\overline{9} \times 4 + 94$
Steve Wilson, 6/24
Lawrence, KS
107 (1.2)
$(-6 + 3 \times 9) \times 5 + 2$
Dana Reigle, 2/24
Lewisburg, PA
108 (3.0)
$2^4 \times 7 + 3 - 7$
Dana Reigle, 1/24
Lewisburg, PA
109 (3.6)
$1 \times 9 + \dfrac{0!^7}{0!\%}$
Steve Wilson, 3/24
Lawrence, KS
110 (2.2)
$2 \times (-1 + 7) + 98$
Dana Reigle, 2/24
Lewisburg, PA
  111 (3.0)
$(6^0 + 9 \times 4) \times 3$
Dana Reigle, 2/24
Lewisburg, PA
112 (1.0)
$7 \times (0 + 2 + 7 + 7)$
Dana Reigle, 2/24
Lewisburg, PA
113 (3.2)
$0 + 5 + 3! \times 9 \times 2$
Steve Wilson, 6/24
Lawrence, KS
114 (2.0)
$1 + 7 \times 17 - 6$
Dana Reigle, 2/24
Lewisburg, PA
115 (3.2)
$2 \times 9 \times 3! + 1 \times 7$
Steve Wilson, 3/24
Lawrence, KS
116 (2.2)
$-6 + 7 + 5 \times 23$
Steve Wilson, 3/24
Lawrence, KS
117 (3.6)
$\dfrac{84}{.\overline{6}} - 7 - \sqrt{4}$
Steve Wilson, 4/24
Lawrence, KS
118 (2.0)
$(8 + 1) \times 8 + 46$
Dana Reigle, 3/24
Lewisburg, PA
119 (1.0)
$7 + (6 + 6) \times 9 + 4$
Dana Reigle, 3/24
Lewisburg, PA
120 (3.2)
$0 + 5! \times 1 \times (3 - 2)$
Steve Wilson, 4/24
Lawrence, KS
  121 (3.6)
$0! + 0 + \dfrac{(0! + 5)!}{6}$
Steve Wilson, 4/24
Lawrence, KS
122 (3.6)
$\sqrt{8 + 1} + (-2 + 7)! - 1$
Steve Wilson, 4/24
Lawrence, KS
123 (2.0)
$45 + 26 \times 3$
Steve Wilson, 4/24
Lawrence, KS
124 (3.2)
$(5 \times 6 + 0!) \times \dfrac82$
Dana Reigle, 4/24
Lewisburg, PA
125 (3.6)
$\dfrac{7}{7\pm \times \sqrt{8^{-5+7}} \phantom8}$
Steve Wilson, 5/24
Lawrence, KS
126 (2.0)
$7 \times (13 - 4) \times 2$
Dana Reigle, 4/24
Lewisburg, PA
127 (3.0)
$(7 - 5)^7 + 7 - 8$
Steve Wilson, 6/24
Lawrence, KS
128 (3.4)
$\left(\dfrac{\sqrt{9}}{6}\right)^{0! - 9 + 1}$
Steve Wilson, 5/24
Lawrence, KS
129 (2.0)
$73 + 63 - 7$
Dana Reigle, 4/24
Lewisburg, PA
130 (3.4)
$17 \times 8 - (\sqrt{7 + 2})!$
Steve Wilson, 5/24
Lawrence, KS
  131 (3.4)
$-1 - 4 + 68 \times \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
132 (3.8)
$4 \times (-0! + 9) + \dfrac{0!}{1\%}$
Steve Wilson, 5/24
Lawrence, KS
133 (2.0)
$22 \times 4 + 9 \times 5$
Dana Reigle, 5/24
Lewisburg, PA
134 (3.2)
$34 + \dfrac{3^0}{1\%}$
Steve Wilson, 6/24
Lawrence, KS
135 (1.0)
$(4 \times 6 - 5 - 4) \times 9$
Dana Reigle, 5/24
Lewisburg, PA
136 (3.2)
$(5 + 8) \times (5 + 3!) - 7$
Steve Wilson, 6/24
Lawrence, KS
137 (3.2)
$10 + 5! + 0 + 7$
Dana Reigle, 6/24
Lewisburg, PA
138 (3.4)
$9 \times (2 + 2 \times 7) - (\sqrt{9})!$
Steve Wilson, 7/24
Lawrence, KS
139 (3.4)
$6 + 8 + \sqrt{9} + 2 + 5!$
Dana Reigle, 6/24
Lewisburg, PA
140 (3.2)
$(8 - \sqrt{9} + 23) \times 5$
Dana Reigle, 6/24
Lewisburg, PA
  141 (3.4)
$\dfrac{4^2 - 0!}{.1} - 9$
Steve Wilson, 7/24
Lawrence, KS
142 (3.2)
$(9 - 5)! \times 6 - 1 - 1$
Steve Wilson, 7/24
Lawrence, KS
143 (3.6)
$2 \times 12 \times (\sqrt{9})! - 0!$
Steve Wilson, 7/24
Lawrence, KS
144 (3.2)
$(21 + \sqrt{9}) \times 6 + 0$
Steve Wilson, 7/24
Lawrence, KS
145 (3.8)
$\sqrt{\left(\dfrac{8}{.\overline{6}}\right)^4} + (0!)^3$
Steve Wilson, 8/24
Lawrence, KS
146 (3.8)
$\sqrt{4} + \sqrt{4} \times 1 \times \dfrac{8}{.\overline{1}}$
Steve Wilson, 8/24
Lawrence, KS
147 (3.4)
$\sqrt[.5]{\sqrt{9} + 8 + 1} + 3$
Steve Wilson, 8/24
Lawrence, KS
148 (2.0)
$62 + 9 + 77$
Dana Reigle, 7/24
Lewisburg, PA
149 (3.2)
$\sqrt{4} + 7 \times 7 \times 1 \times 3$
Dana Reigle, 7/24
Lewisburg, PA
150 (2.2)
$0 \times 9 + \dfrac{9}{6\%} + 0$
Steve Wilson, 8/24
Lawrence, KS
  151 (3.4)
$51 + \dfrac{8}{(7 + 0!)\%}$
Steve Wilson, 8/24
Lawrence, KS
152 (3.2)
$7^2 + \dfrac{1}{1\%} + 3$
Kevin Schwarz, 8/24
Olathe, KS
153 (3.2)
$(4 + 9 + \sqrt{9}) \times 9 + 9$
Kevin Schwarz, 8/24
Olathe, KS
154 (1.0)
$(9 + 9) \times 8 + 3 + 7$
Kevin Schwarz, 8/24
Olathe, KS
155 (3.6)
$2 \times .\overline{9} \times 78 - 0!$
Steve Wilson, 9/24
Lawrence, KS
156 (3.2)
$4! \times 9 - 9 - 51$
Kevin Schwarz, 8/24
Olathe, KS
157 (3.2)
$0! + (5 \times 9 + 7) \times 3$
Kevin Schwarz, 8/24
Olathe, KS
158 (3.2)
$1^7 + \dfrac{3}{2\%} + 8$
Steve Wilson, 9/24
Lawrence, KS
159 (3.4)
$160 - (.\overline{9})^6$
Steve Wilson, 9/24
Lawrence, KS
160 (2.4)
$(3 + 1) \times 8 \times 5 \times .\overline{9}$
Steve Wilson, 11/24
Lawrence, KS
  161 (3.4)
$5! - 0! - 2 + 44$
Dana Reigle, 8/24
Lewisburg, PA
162 (3.8)
$\left( -.5 + .9 + \sqrt{4^5}\right) \times 5$
Steve Wilson, 9/24
Lawrence, KS
163 (3.6)
$\sqrt{\sqrt{3^4}} \times 6 \times 9 + 0!$
Steve Wilson, 9/24
Lawrence, KS
164 (3.6)
$(83 - 0!) \times \sqrt{-2 + 6}$
Kevin Schwarz, 9/24
Olathe, KS
165 (3.8)
$42 + 5! + \sqrt{\dfrac{2}{.\overline{2}}}$
Steve Wilson, 10/24
Lawrence, KS
166 (3.4)
$\dfrac{(3 \times 0)! + 82}{.5}$
Kevin Schwarz, 9/24
Olathe, KS
167 (2.2)
$\dfrac{334}{-4 + 6}$
Kevin Schwarz, 9/24
Olathe, KS
168 (3.2)
$8 \times (5 + 0! + 3 \times 5)$
Dana Reigle, 10/24
Lewisburg, PA
169 (3.4)
$(2 \times 6 + 1)^{(\sqrt{9})!/3}$
Steve Wilson, 10/24
Lawrence, KS
170 (2.2)
$\dfrac{1}{.1} \times (8 + 8 + 1)$
Steve Wilson, 10/24
Lawrence, KS
  171 (3.4)
$71 + \dfrac{0!}{1.0\%}$
Dana Reigle, 9/24
Lewisburg, PA
172 (3.8)
$\dfrac{0!}{0!\%} + (3 + 1)! \times 3$
Steve Wilson, 10/24
Lawrence, KS
173 (2.2)
$\dfrac{78}{.3} - 87$
Steve Wilson, 11/24
Lawrence, KS
174 (3.8)
$\sqrt{5!^2} + \dfrac{8}{.\overline{8}} \times 6$
Steve Wilson, 10/24
Lawrence, KS
175 (3.4)
$\left(\left(5 \times \dfrac87\right)\pm\right)^{\phantom8 5 - 3!}$
Steve Wilson, 11/24
Lawrence, KS
176 (3.6)
$\dfrac{3!}{(2 + 0!)\%} - 8 \times 3$
Steve Wilson, 11/24
Lawrence, KS
177 (3.8)
$\dfrac{8}{.\overline{1} \times .4} - 2 - 0!$
Steve Wilson, 11/24
Lawrence, KS
178 (4.6)
$\sin(6!^\circ) + 171 + 7$
Steve Wilson, 12/24
Lawrence, KS
179 (3.6)
$-7 + 6 + \dfrac{6!}{\sqrt{9} + 1}$
Steve Wilson, 12/24
Lawrence, KS
180 (3.4)
$4! \times 7 + (3 + 0!) \times 3$
Kevin Schwarz, 11/24
Olathe, KS
  181 (2.4)
$(.5 \times 9 \times 8 + .2) \times 5$
Steve Wilson, 12/24
Lawrence, KS
182 (3.4)
$3! - 4 + 90 \times \sqrt{4}$
Dana Reigle, 11/24
Lewisburg, PA
183 (3.2)
$2 + 8 \times 7 + 5 + 5!$
Dana Reigle, 11/24
Lewisburg, PA
184 (2.0)
$46 \times (8 - 7 + 3)$
Steve Wilson, 12/24
Lawrence, KS
185 (1.0)
$(1 - (1 - 5) \times 9) \times 5$
Dana Reigle, 11/24
Lewisburg, PA
186 (2.0)
$6 \times 28 + 6 \times 3$
Kevin Schwarz, 10/24
Olathe, KS
187 (2.0)
$8 + 8 \times 23 - 5$
Kevin Schwarz, 10/24
Olathe, KS
188 (3.4)
$-3 + 78 - 7 + 5!$
Steve Wilson, 12/24
Lawrence, KS
189 (1.2)
$9 \times ((-3 + 7) \times 5 + 1)$
Dana Reigle, 12/24
Lewisburg, PA
190 (2.2)
$95 \times \left(\dfrac{7}{.7} - 8\right)$
Steve Wilson, 1/25
Lawrence, KS
  191 (3.8)
$185 + \left(\sqrt{\dfrac{7}{.\overline{7}}}\right)!$
Steve Wilson, 1/25
Lawrence, KS
192 (2.2)
$\dfrac{80}{.5} + 32$
Steve Wilson, 2/25
Lawrence, KS
193 (2.0)
$171 + 22$
Kevin Schwarz, 12/24
Olathe, KS
194 (3.4)
$-6 + 80 + \dfrac{6!}{6}$
Dana Reigle, 12/24
Lewisburg, PA
195 (3.8)
$1 - 3! + \dfrac{0! + 0!}{1\%}$
Steve Wilson, 1/25
Lawrence, KS
196 (2.0)
$(9 + 27 - 8) \times 7$
Steve Wilson, 1/25
Lawrence, KS
197 (3.6)
$\dfrac{66}{\sqrt{.\overline{1}}} - 1 \times 1$
Steve Wilson, 1/25
Lawrence, KS
198 (3.2)
$9 \times (5 + 9 - 0! + 9)$
Dana Reigle, 12/24
Lewisburg, PA
199 (2.2)
$\dfrac{2}{1\%} - \dfrac{6 - 4}{2}$
Kevin Schwarz, 1/25
Olathe, KS
200 (2.6)
$0 + \dfrac{1.\overline{9}}{(-8 + 9)\%}$
Kevin Schwarz, 1/25
Olathe, KS
  201 (1.0)
$3 \times (8 \times (0 + 9) - 5)$
Dana Reigle, 2/25
Lewisburg, PA
202 (3.4)
$2 \times \left(\dfrac{5}{(7 - 2)\%} + 0!\right)$
Steve Wilson, 2/25
Lawrence, KS
203 (3.8)
$-1 + \dfrac{0!}{.6} \times 5! + 4$
Steve Wilson, 2/25
Lawrence, KS
204 (2.4)
$8 \times (-.5 + 8 + 6 \times 3)$
Steve Wilson, 2/25
Lawrence, KS
205 (4.6)
$27 \times 8 - 8 - \ln\sqrt{\exp 6}$
Steve Wilson, 3/25
Lawrence, KS
206 (2.2)
$5 + \dfrac{9 + 3}{6\%} + 1$
Dana Reigle, 1/25
Lewisburg, PA
207 (3.2)
$5! + 3 + 3 + 81$
Steve Wilson, 6/25
Lawrence, KS
208 (3.4)
$8 \times \left(27 - \dfrac{(\sqrt{9})!}{6}\right)$
Dana Reigle, 1/25
Lewisburg, PA
209 (3.4)
$(8 - 2)^3 - 0! - 3!$
Steve Wilson, 2/25
Lawrence, KS
210 (3.6)
$\dfrac{0!}{.1} \times \sqrt{9} \times (5 + 2)$
Steve Wilson, 3/25
Lawrence, KS
  211 (3.4)
$(0! + 3) \times 53 - 0!$
Dana Reigle, 2/25
Lewisburg, PA
212 (3.6)
$1.8 \times 5! + 2 - (\sqrt{9})!$
Steve Wilson, 3/25
Lawrence, KS
213 (2.6)
$6 \times (8 \times 9 - .\overline{9}) \times .5$
Steve Wilson, 3/25
Lawrence, KS
214 (3.4)
$7 + 7 + \dfrac{3!}{6\%} \times 2$
Steve Wilson, 3/25
Lawrence, KS
215 (1.2)
$(-2 + 5 \times 9) \times (9 - 4)$
Kevin Schwarz, 3/25
Olathe, KS
216 (1.0)
$1 \times 3 \times 8 \times 9 \times 1$
Dana Reigle, 2/25
Lewisburg, PA
217 (2.4)
$2 \times (4 - .9) \times \dfrac{7}{.2}$
Kevin Schwarz, 2/25
Olathe, KS
218 (3.4)
$\dfrac{1 \times 7}{7\%} + 5! - 2$
Steve Wilson, 4/25
Lawrence, KS
219 (2.8)
$(8 \times 3 - .\overline{4} + .\overline{7}) \times 9$
Steve Wilson, 6/25
Lawrence, KS
220 (3.4)
$\dfrac{1^3}{1\%} + 5! \times 1$
Steve Wilson, 4/25
Lawrence, KS
  221 (3.6)
$\dfrac{5}{5\%} + \sqrt{\sqrt{(7 + 4)^8}}$
Steve Wilson, 4/25
Lawrence, KS
222 (2.0)
$(57 - 2) \times 4 + 2$
Steve Wilson, 6/25
Lawrence, KS
223 (2.2)
$(45 - .4) \times 1 \times 5$
Steve Wilson, 4/25
Lawrence, KS
224 (3.2)
$(0! + 6 + 9) \times (5 + 9)$
Steve Wilson, 4/25
Lawrence, KS
225 (3.4)
$(5 \times (-0! + 8 - 2)) \times 9$
Finnian Sloan, 4/25
Kuala Lumpur, Malaysia
226 (3.4)
$5! + 3 + 3 + \dfrac{1}{1\%}$
Finnian Sloan, 4/25
Kuala Lumpur, Malaysia
227 (4.8)
$\dfrac{6!}{\sec\arctan\sqrt{8}} - 6^1 - 7$
Steve Wilson, 6/25
Lawrence, KS
228 (4.8)
$2^7 + \sin(8!^\circ) + \dfrac{5}{5\%}$
Kevin Schwarz, 5/25
Olathe, KS
229 (3.6)
$\dfrac{8 + 8 + (\sqrt{9})\% + 0}{7\%}$
Steve Wilson, 5/25
Lawrence, KS
230 (3.6)
$5 \times (0! - \sqrt{9} + 8 \times 3!)$
Dana Reigle, 4/25
Lewisburg, PA
  231 (3.2)
$81 + 75 \times \sqrt{4}$
Dana Reigle, 4/25
Lewisburg, PA
232 (2.0)
$6 \times 37 + 4 + 6$
Steve Wilson, 5/25
Lawrence, KS
233 (3.2)
$\dfrac{-.4 + 9 \times .3}{.\overline{9}\%} + 3$
Steve Wilson, 5/25
Lawrence, KS
234 (3.4)
$1 - 9 + 2 + 5! + 5!$
Steve Wilson, 5/25
Lawrence, KS
235 (3.6)
$(-0! + 60) \times 4 - 0!$
Steve Wilson, 5/25
Lawrence, KS
236 (3.6)
$-0! + \sqrt{9} \times (2 + 77)$
Dana Reigle, 5/25
Lewisburg, PA
01671 13900 239 (1.2)
$-9 - 8 + 4 \times 8 \times 8$
Dana Reigle, 5/25
Lewisburg, PA
240 (2.2)
$240 \times (-1 + 2)$
Kevin Schwarz, 4/25
Olathe, KS
  241 (2.4)
$-8 + .5 \times 83 \times 6$
Steve Wilson, 6/25
Lawrence, KS
16035 63707 66010 47101 81942 95559 61989 46767 83744
  94482 55379 77472 68471 04047 53464 62080 46684 25906 94912

Page 1 (1-400).