$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

## Integermania!

#### First Four Evens

Using one copy each of the digits 2, 4, 6, and 8, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601+).

 1201 (2.8) $\dfrac{8 - 2\%}{.\overline{6}\%} + 4$ Steve Wilson, 1/24Lawrence, KS 1202 (2.2) $\dfrac{8 \times 6}{4\%} + 2$ Yi Zheng, 1/16Olathe, KS 1203 (2.4) $(8 + 2\%) \times \dfrac{6}{4\%}$ Steve Wilson, 1/24Lawrence, KS 1204 (2.4) $\dfrac{6 \times 4 + 8\%}{2\%}$ Steve Wilson, 1/24Lawrence, KS 1205 (2.4) $\dfrac{6 \times 8 + .2}{4\%}$ Steve Wilson, 1/24Lawrence, KS 1206 (2.6) $\dfrac{8}{.\overline{6}\%} + 4 + 2$ Steve Wilson, 1/24Lawrence, KS 1207 (2.8) $\dfrac{8 + 2\%}{.\overline{6}\%} + 4$ Steve Wilson, 1/24Lawrence, KS 1208 (2.2) $\dfrac{6 \times 4}{2\%} + 8$ Steve Wilson, 1/24Lawrence, KS 1209 (2.8) $\dfrac{8 + (4 + 2)\%}{.\overline{6}\%}$ Steve Wilson, 1/24Lawrence, KS 1210 (3.6) $\dfrac{4! + 8\%}{2\%} + 6$ Steve Wilson, 1/24Lawrence, KS 1211 (3.6) $\dfrac{4! + 6\%}{2\%} + 8$ Steve Wilson, 1/24Lawrence, KS 1212 (2.2) $6 \times \left(\dfrac{8}{4\%} + 2 \right)$ Steve Wilson, 1/24Lawrence, KS 1214 (3.0) $6^4 - 82$ Steve Wilson, 1/24Lawrence, KS 1215 (2.6) $\dfrac{8 - 2.6}{.\overline{4}\%}$ Steve Wilson, 2/24Lawrence, KS 1216 (2.2) $8 \times \left(\dfrac{6}{4\%} + 2 \right)$ Steve Wilson, 1/24Lawrence, KS 1218 (3.0) $\dfrac{8}{.\overline{6}\%} + \dfrac{4}{.\overline{2}}$ Steve Wilson, 1/24Lawrence, KS 1220 (2.8) $\dfrac{8}{.\overline{6}\%} + \dfrac{4}{.2}$ Steve Wilson, 1/24Lawrence, KS 1222 (3.6) $\dfrac{4! + .6}{2\%} - 8$ Steve Wilson, 1/24Lawrence, KS 1224 (2.4) $(4 + 8\%) \times \dfrac{6}{2\%}$ Steve Wilson, 1/24Lawrence, KS 1225 (2.6) $\dfrac{6 + 4 - .2}{.8\%}$ Steve Wilson, 2/24Lawrence, KS 1226 (2.6) $\dfrac{8.2}{.\overline{6}\%} - 4$ Steve Wilson, 1/24Lawrence, KS 1228 (3.8) $\dfrac{8.2}{.\overline{6}\%} - \sqrt{4}$ Steve Wilson, 2/24Lawrence, KS 1230 (2.4) $(8 + 2\%) \times \dfrac{6}{4\%}$ Steve Wilson, 1/24Lawrence, KS 1232 (2.2) $4 \times \left(\dfrac{6}{2\%} + 8 \right)$ Steve Wilson, 1/24Lawrence, KS 1234 (2.6) $\dfrac{8.2}{.\overline{6}\%} + 4$ Steve Wilson, 1/24Lawrence, KS 1236 (2.4) $\dfrac{824}{.\overline{6}}$ Steve Wilson, 1/24Lawrence, KS 1238 (3.6) $\dfrac{4! + .6}{2\%} + 8$ Steve Wilson, 1/24Lawrence, KS 1239 (3.6) $\dfrac{826}{\sqrt{.\overline{4}}}$ Steve Wilson, 2/24Lawrence, KS 1240 (2.4) $\dfrac{6 \times 4 + .8}{2\%}$ Steve Wilson, 1/24Lawrence, KS 1242 (2.6) $\dfrac{8}{.\overline{6}\%} + 42$ Steve Wilson, 1/24Lawrence, KS 1243 (3.6) $\dfrac{4! + .86}{2\%}$ Steve Wilson, 1/24Lawrence, KS 1244 (3.6) $\dfrac{\sqrt{4}}{8\% \times 2\%} - 6$ Steve Wilson, 1/24Lawrence, KS 1245 (3.4) $\dfrac{8}{.\overline{6}\%} + \dfrac{.2}{.\overline{4}\%}$ Steve Wilson, 2/24Lawrence, KS 1246 (3.4) $\sqrt{6^8} - \dfrac{2}{4\%}$ Steve Wilson, 1/24Lawrence, KS 1248 (2.0) $26 \times 48$ Callie Biddle, 4/16Olathe, KS 1250 (2.4) $\dfrac{4 + 2}{6\% \times 8\%}$ Steve Wilson, 2/24Lawrence, KS 1252 (2.4) $\dfrac{6 + 4}{.8\%} + 2$ Steve Wilson, 2/24Lawrence, KS 1254 (3.2) $\sqrt{6^8} - 42$ Steve Wilson, 1/24Lawrence, KS 1256 (3.6) $\dfrac{\sqrt{4}}{8\% \times 2\%} + 6$ Steve Wilson, 1/24Lawrence, KS 1257 (2.8) $\dfrac{8.4 - 2\%}{.\overline{6}\%}$ Steve Wilson, 2/24Lawrence, KS 1258 (2.6) $\dfrac{8.4}{.\overline{6}\%} - 2$ Steve Wilson, 1/24Lawrence, KS 1260 (2.6) $\dfrac{6.8 - 4}{.\overline{2}\%}$ Steve Wilson, 2/24Lawrence, KS 1262 (2.6) $\dfrac{8.4}{.\overline{6}\%} + 2$ Steve Wilson, 1/24Lawrence, KS 1263 (2.6) $\dfrac{842}{.\overline{6}\%}$ Steve Wilson, 1/24Lawrence, KS 1264 (3.6) $\sqrt{6^8} - \sqrt[.2]{\sqrt{4}}$ Steve Wilson, 1/24Lawrence, KS 1266 (4.0) $\sqrt{6^8} - \dfrac{2}{\sqrt{.\overline{4}\%}}$ Steve Wilson, 2/24Lawrence, KS 1268 (2.6) $\dfrac{6}{.\overline{4}\%} - 82$ Steve Wilson, 2/24Lawrence, KS 1269 (4.2) $\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + 4! \times 6$ Steve Wilson, 2/24Lawrence, KS 1270 (2.8) $\dfrac{8 - .4 + 2\%}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1271 (3.2) $6^4 - \dfrac{2}{8\%}$ Steve Wilson, 2/24Lawrence, KS 1272 (3.2) $6^4 - \left(\dfrac82\right)!$ Steve Wilson, 1/24Lawrence, KS 1274 (3.4) $\sqrt{6^8} - 4! + 2$ Steve Wilson, 1/24Lawrence, KS 1275 (2.4) $\dfrac{6 + 4.2}{.8\%}$ Steve Wilson, 2/24Lawrence, KS 1276 (3.4) $\sqrt{6^8} - \dfrac{4}{.2}$ Steve Wilson, 1/24Lawrence, KS 1277 (3.6) $\dfrac{2^8 - .6}{\sqrt{4\%}}$ Steve Wilson, 2/24Lawrence, KS 1278 (3.6) $\sqrt{6^8} - \dfrac{4}{.\overline{2}}$ Steve Wilson, 1/24Lawrence, KS 1280 (2.6) $(2 - 8\%) \times \dfrac{4}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1281 (3.8) $6^4 - \sqrt{\dfrac{2}{.\overline{8}\%}}$ Steve Wilson, 2/24Lawrence, KS 1282 (3.8) $\left(\sqrt{(2\%)^{-6}}\right)\% + 8 \times 4$ Steve Wilson, 2/24Lawrence, KS 1283 (3.6) $\dfrac{2^8 + .6}{\sqrt{4\%}}$ Steve Wilson, 2/24Lawrence, KS 1284 (3.4) $\sqrt{6^8} - \dfrac{4!}{2}$ Steve Wilson, 1/24Lawrence, KS 1286 (3.0) $6^4 - 8 - 2$ Steve Wilson, 1/24Lawrence, KS 1287 (2.8) $\dfrac{6 - .28}{.\overline{4}\%}$ Steve Wilson, 2/24Lawrence, KS 1288 (2.0) $46 \times 28$ Kyle Wilkinson, 2/16Shawnee, KS 1290 (2.8) $\dfrac{8.4 + .2}{.\overline{6}\%}$ Steve Wilson, 2/24Lawrence, KS 1291 (3.4) $\sqrt{6^8} - \dfrac{2}{.4}$ Steve Wilson, 1/24Lawrence, KS 1292 (3.0) $6^4 - \dfrac82$ Steve Wilson, 1/24Lawrence, KS 1293 (3.6) $\dfrac{862}{\sqrt{.\overline{4}}}$ Steve Wilson, 2/24Lawrence, KS 1294 (3.0) $6^{8-4} - 2$ Steve Wilson, 1/24Lawrence, KS 1295 (2.6) $\dfrac{6 - 82\%}{.4\%}$ Steve Wilson, 2/24Lawrence, KS 1296 (2.0) $648 \times 2$ Steve Wilson, 2/24Lawrence, KS 1297 (2.8) $\dfrac{6 - .2}{.\overline{4}\%} - 8$ Steve Wilson, 2/24Lawrence, KS 1298 (2.6) $\dfrac{6 - .8}{.4\%} - 2$ Steve Wilson, 2/24Lawrence, KS 1299 (3.8) $6^4 + \dfrac{2}{\sqrt{.\overline{4}}}$ Steve Wilson, 2/24Lawrence, KS 1300 (2.2) $26 \times \dfrac{4}{8\%}$ Steve Wilson, 2/24Lawrence, KS 1301 (3.4) $\sqrt{6^8} + \dfrac{2}{.4}$ Steve Wilson, 1/24Lawrence, KS 1302 (2.6) $\dfrac{6 - .8}{.4\%} + 2$ Steve Wilson, 2/24Lawrence, KS 1304 (2.6) $\dfrac{8 - .2}{.6\%} + 4$ Steve Wilson, 2/24Lawrence, KS 1305 (2.8) $\dfrac{6 - .8 + 2\%}{.4\%}$ Steve Wilson, 2/24Lawrence, KS 1306 (3.0) $6^4 + 8 + 2$ Sehrish Javed, 10/15Overland Park, KS 1308 (3.4) $\sqrt{6^8} + \dfrac{4!}{2}$ Steve Wilson, 1/24Lawrence, KS 1310 (2.8) $\dfrac{6}{.\overline{4}\%} - \dfrac{8}{.2}$ Steve Wilson, 2/24Lawrence, KS 1311 (3.8) $6^4 + \sqrt{\dfrac{2}{.\overline{8}\%}}$ Steve Wilson, 2/24Lawrence, KS 1312 (3.0) $6^4 + 8 \times 2$ Abigail Bishop, 10/15Olathe, KS 1313 (2.8) $\dfrac{6 - .2}{.\overline{4}\%} + 8$ Steve Wilson, 2/24Lawrence, KS 1314 (2.8) $\dfrac{6 - 8 \times 2\%}{.\overline{4}\%}$ Steve Wilson, 2/24Lawrence, KS 1316 (3.4) $\sqrt{6^8} + \dfrac{4}{.2}$ Steve Wilson, 1/24Lawrence, KS 1318 (3.4) $\sqrt{6^8} + 4! - 2$ Steve Wilson, 1/24Lawrence, KS 1320 (2.6) $\dfrac{4 \times 2 - 8\%}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1321 (3.2) $6^4 + \dfrac{2}{8\%}$ Steve Wilson, 2/24Lawrence, KS 1322 (2.6) $\dfrac{6}{.\overline{4}\%} - 28$ Steve Wilson, 2/24Lawrence, KS 1323 (2.8) $(2 - 4\%) \times \dfrac{6}{.\overline{8}\%}$ Steve Wilson, 2/24Lawrence, KS 1324 (3.0) $6^4 + 28$ Salvador Aguirre, 8/16Overland Park, KS 1325 (2.6) $\dfrac{8 - \dfrac{.2}{4}}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1326 (2.6) $6 \times \left( \dfrac{2}{.\overline{8}\%} - 4 \right)$ Steve Wilson, 2/24Lawrence, KS 1327 (2.8) $\dfrac{8 - (4 - .2)\%}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1328 (2.8) $(2 - .8\%) \times \dfrac{4}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1329 (2.8) $\dfrac{8 - .2\%}{.6\%} - 4$ Steve Wilson, 2/24Lawrence, KS 1330 (2.6) $\dfrac{8 - \dfrac{4\%}{2}}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1332 (2.8) $\dfrac{4 \times 2 - .8\%}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1333 (2.8) $\dfrac{8 - \dfrac{.4\%}{2}}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1334 (2.6) $\dfrac{6}{.\overline{4}\%} - 8 \times 2$ Steve Wilson, 2/24Lawrence, KS 1336 (2.8) $\dfrac{8 + (2 - .4)\%}{.6\%}$ Steve Wilson, 2/24Lawrence, KS 1337 (2.8) $\dfrac{8 - .2\%}{.6\%} + 4$ Steve Wilson, 2/24Lawrence, KS 1338 (2.6) $\dfrac{8 + 4\%}{.6\%} - 2$ Steve Wilson, 2/24Lawrence, KS 1340 (2.6) $\dfrac{6}{.\overline{4}\%} - 8 - 2$ Steve Wilson, 2/24Lawrence, KS 1341 (2.8) $2 \times \dfrac{6 - 4\%}{.\overline{8}\%}$ Steve Wilson, 2/24Lawrence, KS 1342 (2.6) $\dfrac{8 + 4\%}{.6\%} + 2$ Steve Wilson, 2/24Lawrence, KS 1344 (2.6) $\dfrac{6}{.\overline{4}\%} - 8 + 2$ Steve Wilson, 2/24Lawrence, KS 1346 (2.6) $\dfrac{6 \times 2}{.\overline{8}\%} - 4$ Steve Wilson, 2/24Lawrence, KS 1348 (3.4) $8! \times \dfrac{.2}{6} + 4$ Jonathan Frank, 11/22Rye, NY 1349 (3.0) $\dfrac{6}{.\overline{4}\%} - .8 - .2$ Steve Wilson, 2/24Lawrence, KS 1350 (2.2) $\dfrac{62 - 8}{4\%}$ Jonathan Frank, 9/21Rye, NY 1351 (3.0) $\dfrac{6}{.\overline{4}\%} + .8 + .2$ Steve Wilson, 2/24Lawrence, KS 1352 (3.8) $\dfrac{6 \times 2}{.\overline{8}\%} + \sqrt{4}$ Steve Wilson, 2/24Lawrence, KS 1354 (2.6) $\dfrac{6 \times 2}{.\overline{8}\%} + 4$ Steve Wilson, 2/24Lawrence, KS 1356 (2.6) $\dfrac{6}{.\overline{4}\%} + 8 - 2$ Steve Wilson, 2/24Lawrence, KS 1358 (2.6) $2 \times \left( \dfrac{6}{.\overline{8}\%} + 4 \right)$ Steve Wilson, 2/24Lawrence, KS 1359 (2.8) $(6 + 4\%) \times \dfrac{2}{.\overline{8}\%}$ Steve Wilson, 2/24Lawrence, KS 1360 (2.2) $68 \times \dfrac{4}{.2}$ Feker Ashenafi, 11/16Overland Park, KS 1362 (3.8) $6 \times \left( \dfrac{2}{.\overline{8}\%} + \sqrt{4} \right)$ Steve Wilson, 2/24Lawrence, KS 1364 (3.6) $\dfrac{6!}{.\overline{4}} - 2^8$ Steve Wilson, 2/24Lawrence, KS 1366 (2.4) $\dfrac{82 - 4\%}{6\%}$ Steve Wilson, 2/24Lawrence, KS 1368 (2.0) $684 \times 2$ Jessica Hodge, 1/16Overland Park, KS 1370 (2.8) $\dfrac{6 + 8\%}{.\overline{4}\%} + 2$ Steve Wilson, 2/24Lawrence, KS 1374 (2.6) $6 \times \left( \dfrac{2}{.\overline{8}\%} + 4 \right)$ Steve Wilson, 2/24Lawrence, KS 1375 (2.6) $\dfrac{6 + \dfrac{2}{.4}}{.8\%}$ Steve Wilson, 2/24Lawrence, KS 1376 (3.0) $86 \times 4^2$ Adam Alazzeh, 12/15Overland Park, KS 1377 (2.8) $(2 + 4\%) \times \dfrac{6}{.\overline{8}\%}$ Steve Wilson, 2/24Lawrence, KS 1378 (2.6) $\dfrac{6}{.\overline{4}\%} + 28$ Steve Wilson, 2/24Lawrence, KS 1380 (3.6) $\left(6! - \dfrac{4!}{.8}\right) \times 2$ Steve Wilson, 1/24Lawrence, KS 1384 (3.4) $(6! - 4!) \times 2 - 8$ Steve Wilson, 1/24Lawrence, KS 1386 (2.8) $\dfrac{6 + 8 \times 2\%}{.\overline{4}\%}$ Steve Wilson, 2/24Lawrence, KS 1387 (2.6) $\dfrac{6.2}{.\overline{4}\%} - 8$ Steve Wilson, 2/24Lawrence, KS 1390 (2.8) $\dfrac{6}{.\overline{4}\%} + \dfrac{8}{.2}$ Steve Wilson, 2/24Lawrence, KS 1392 (2.8) $8 \times \left( \dfrac{.4}{.\overline{2}\%} - 6 \right)$ Steve Wilson, 2/24Lawrence, KS 1394 (3.4) $\dfrac{28}{(\sqrt{4})\%} - 6$ Steve Wilson, 1/24Lawrence, KS 1395 (2.8) $\dfrac{6 \times 2 + .4}{.\overline{8}\%}$ Steve Wilson, 2/24Lawrence, KS 1396 (3.6) $\sqrt{6^8} + \dfrac{\sqrt{4}}{2\%}$ Steve Wilson, 1/24Lawrence, KS 1398 (2.2) $\dfrac{84}{6\%} - 2$ Jonathan Frank, 11/22Rye, NY 1400 (2.2) $\dfrac{28}{(6 - 4)\%}$ Steve Wilson, 2/24Lawrence, KS 1402 (2.2) $\dfrac{84}{6\%} + 2$ Jonathan Frank, 11/22Rye, NY 1403 (2.6) $\dfrac{6.2}{.\overline{4}\%} + 8$ Steve Wilson, 2/24Lawrence, KS 1404 (3.6) $\left(6! - \dfrac{8}{.\overline{4}} \right) \times 2$ Steve Wilson, 1/24Lawrence, KS 1406 (3.4) $\dfrac{28}{(\sqrt{4})\%} + 6$ Steve Wilson, 1/24Lawrence, KS 1408 (2.8) $\dfrac{6.\overline{2}}{.\overline{4}\%} + 8$ Steve Wilson, 2/24Lawrence, KS 1410 (3.6) $6! \times 2 - \dfrac{4!}{.8}$ Steve Wilson, 1/24Lawrence, KS 1412 (3.4) $6! \times \sqrt{4} - 28$ Steve Wilson, 1/24Lawrence, KS 1413 (2.4) $\dfrac{628}{.\overline{4}}$ Steve Wilson, 2/24Lawrence, KS 1414 (3.6) $\dfrac{6}{.\overline{4}\%} + 8^2$ Steve Wilson, 2/24Lawrence, KS 1415 (2.8) $\dfrac{6.2\overline{8}}{.\overline{4}\%}$ Steve Wilson, 2/24Lawrence, KS 1416 (2.8) $4 \times \left( \dfrac{.8}{.\overline{2}\%} - 6 \right)$ Steve Wilson, 2/24Lawrence, KS 1418 (2.4) $\dfrac{6}{.4\%} - 82$ Steve Wilson, 2/24Lawrence, KS 1420 (3.2) $(6! - 8) \times 2 - 4$ Steve Wilson, 1/24Lawrence, KS 1421 (3.6) $6^4 + \sqrt{(8\pm)^{-2}\phantom.}$ Steve Wilson, 2/24Lawrence, KS 1422 (3.6) $6! \times 2 - \dfrac{8}{.\overline{4}}$ Steve Wilson, 1/24Lawrence, KS 1424 (3.2) $(6! - 4) \times 2 - 8$ Steve Wilson, 1/24Lawrence, KS 1425 (2.8) $\dfrac{8 - 2\%}{(.6 - 4\%)\%}$ Steve Wilson, 2/24Lawrence, KS 1426 (3.4) $(6! - 8) \times 2 + \sqrt{4}$ Steve Wilson, 2/24Lawrence, KS 1428 (3.2) $6! \times 2 - 4 - 8$ Jonathan Frank, 7/21Rye, NY 1430 (2.6) $\dfrac{6 - 28\%}{.4\%}$ Steve Wilson, 2/24Lawrence, KS 1432 (2.6) $\dfrac{6}{.\overline{4}\%} + 82$ Steve Wilson, 2/24Lawrence, KS 1434 (2.8) $\dfrac{8 \times .4}{.\overline{2}\%} - 6$ Steve Wilson, 2/24Lawrence, KS 1435 (3.4) $6! \times 2 - \dfrac{4}{.8}$ Steve Wilson, 1/24Lawrence, KS 1436 (3.2) $6! \times 2 + 4 - 8$ Jonathan Frank, 7/21Rye, NY 1437 (3.4) $6! \times 2 - \dfrac{4!}{8}$ Steve Wilson, 1/24Lawrence, KS 1438 (3.2) $6! \times 2 - \dfrac84$ Jonathan Frank, 11/22Rye, NY 1439 (3.2) $\left(6! - \dfrac48\right) \times 2$ Steve Wilson, 1/24Lawrence, KS 1440 (2.2) $\dfrac{6 \times 48}{.2}$ Steve Wilson, 2/24Lawrence, KS 1441 (3.2) $\left(6! + \dfrac48\right) \times 2$ Steve Wilson, 1/24Lawrence, KS 1442 (2.6) $\dfrac{6 - .2}{.4\%} - 8$ Steve Wilson, 2/24Lawrence, KS 1443 (3.4) $6! \times 2 + \dfrac{4!}{8}$ Steve Wilson, 1/24Lawrence, KS 1444 (3.0) $(46 - 8)^2$ Israel Olmedo, 8/16Edgerton, KS 1445 (3.4) $6! \times 2 + \dfrac{4}{.8}$ Steve Wilson, 1/24Lawrence, KS 1446 (2.8) $\dfrac{8 \times .4}{.\overline{2}\%} + 6$ Steve Wilson, 2/24Lawrence, KS 1448 (3.2) $6! \times \dfrac42 + 8$ Jordan May, 9/15Overland Park, KS 1450 (2.6) $\dfrac{6 \times 2 - .4}{.8\%}$ Steve Wilson, 2/24Lawrence, KS 1452 (3.2) $6! \times 2 + 4 + 8$ Jonathan Frank, 7/21Rye, NY 1454 (3.4) $(6! + 8) \times 2 - \sqrt{4}$ Steve Wilson, 2/24Lawrence, KS 1456 (3.2) $(6! + 4) \times 2 + 8$ Steve Wilson, 1/24Lawrence, KS 1458 (2.6) $\dfrac{6 - .2}{.4\%} + 8$ Steve Wilson, 2/24Lawrence, KS 1460 (2.6) $\dfrac{6}{.4\%} - \dfrac{8}{.2}$ Steve Wilson, 2/24Lawrence, KS 1464 (2.8) $\dfrac{6}{.4\%} - \dfrac{8}{.\overline{2}}$ Steve Wilson, 2/24Lawrence, KS 1465 (3.6) $6! \times \sqrt{4} + \dfrac{2}{8\%}$ Steve Wilson, 1/24Lawrence, KS 1467 (3.8) $6! \times 2 + \dfrac{4!}{.\overline{8}}$ Steve Wilson, 2/24Lawrence, KS 1468 (3.4) $6! \times \sqrt{4} + 28$ Steve Wilson, 1/24Lawrence, KS 1470 (2.6) $(2 - 4\%) \times \dfrac{6}{.8\%}$ Steve Wilson, 2/24Lawrence, KS 1472 (2.4) $\dfrac{6}{.4\%} - 28$ Steve Wilson, 2/24Lawrence, KS 1475 (2.6) $\dfrac{6}{.4\%} - \dfrac{2}{8\%}$ Steve Wilson, 2/24Lawrence, KS 1476 (2.4) $6 \times \left( \dfrac{2}{.8\%} - 4 \right)$ Steve Wilson, 2/24Lawrence, KS 1478 (2.6) $\dfrac{6 - 8\%}{.4\%} - 2$ Steve Wilson, 2/24Lawrence, KS 1480 (2.4) $(8 - .6) \times \dfrac{4}{2\%}$ Steve Wilson, 2/24Lawrence, KS 1482 (2.6) $\dfrac{6 - 8\%}{.4\%} + 2$ Steve Wilson, 2/24Lawrence, KS 1483 (3.6) $\dfrac{6!}{.\overline{48}} - 2$ Steve Wilson, 1/24Lawrence, KS 1484 (2.4) $\dfrac{6}{.4\%} - 8 \times 2$ Steve Wilson, 2/24Lawrence, KS 1485 (2.6) $\dfrac{8 - 2 - 6\%}{.4\%}$ Steve Wilson, 2/24Lawrence, KS 1487 (2.6) $\dfrac{6 - 2\%}{.4\%} - 8$ Steve Wilson, 2/24Lawrence, KS 1488 (2.0) $248 \times 6$ Callie Biddle, 1/16Olathe, KS 1490 (2.4) $\dfrac{6}{.4\%} - 8 - 2$ Steve Wilson, 2/24Lawrence, KS 1492 (2.4) $2 \times \left( \dfrac{6}{.8\%} - 4 \right)$ Steve Wilson, 2/24Lawrence, KS 1493 (2.6) $\dfrac{6 - 2.8\%}{.4\%}$ Steve Wilson, 2/24Lawrence, KS 1494 (2.4) $\dfrac{6}{.4\%} - 8 + 2$ Steve Wilson, 2/24Lawrence, KS 1495 (2.6) $\dfrac{6 \times 2 - 4\%}{.8\%}$ Steve Wilson, 2/24Lawrence, KS 1496 (2.4) $\dfrac{6}{.4\%} - \dfrac82$ Steve Wilson, 2/24Lawrence, KS 1497 (2.6) $\dfrac{6 + 2\%}{.4\%} - 8$ Steve Wilson, 2/24Lawrence, KS 1498 (2.6) $\dfrac{6}{(.8 - .4)\%} - 2$ Steve Wilson, 2/24Lawrence, KS 1499 (2.8) $\dfrac{6}{.4\%} - .8 - .2$ Steve Wilson, 2/24Lawrence, KS 1500 (2.2) $(8 + 2) \times \dfrac{6}{4\%}$ Steve Wilson, 2/24Lawrence, KS 1501 (2.8) $\dfrac{6}{.4\%} + .8 + .2$ Steve Wilson, 2/24Lawrence, KS 1502 (2.6) $\dfrac{6}{(.8 - .4)\%} + 2$ Steve Wilson, 2/24Lawrence, KS 1503 (2.6) $\dfrac{6 - 2\%}{.4\%} + 8$ Steve Wilson, 2/24Lawrence, KS 1504 (2.4) $\dfrac{6}{.4\%} + \dfrac82$ Steve Wilson, 2/24Lawrence, KS 1505 (2.6) $\dfrac{6 \times 2 + 4\%}{.8\%}$ Steve Wilson, 2/24Lawrence, KS 1506 (2.4) $\dfrac{6}{.4\%} + 8 - 2$ Steve Wilson, 2/24Lawrence, KS 1507 (2.6) $\dfrac{6 + 2.8\%}{.4\%}$ Steve Wilson, 2/24Lawrence, KS 1508 (2.4) $2 \times \left( \dfrac{6}{.8\%} + 4 \right)$ Steve Wilson, 2/24Lawrence, KS 1510 (2.4) $\dfrac{6}{.4\%} + 8 + 2$ Steve Wilson, 2/24Lawrence, KS 1512 (3.4) $6 \times \left( \dfrac{2}{8\pmf} + \sqrt{4} \right)$ Steve Wilson, 2/24Lawrence, KS 1513 (2.6) $\dfrac{6 + 2\%}{.4\%} + 8$ Steve Wilson, 2/24Lawrence, KS 1515 (2.6) $\dfrac{8 - 2 + 6\%}{.4\%}$ Steve Wilson, 2/24Lawrence, KS 1516 (2.4) $\dfrac{6}{.4\%} + 8 \times 2$ Steve Wilson, 2/24Lawrence, KS 1518 (2.6) $\dfrac{6 + 8\%}{.4\%} - 2$ Steve Wilson, 2/24Lawrence, KS 1520 (3.6) $\left(6! + \dfrac{8}{.2}\right) \times \sqrt{4}$ Steve Wilson, 1/24Lawrence, KS 1522 (2.6) $\dfrac{6 + 8\%}{.4\%} + 2$ Steve Wilson, 2/24Lawrence, KS 1524 (2.4) $6 \times \left( \dfrac{2}{.8\%} + 4 \right)$ Steve Wilson, 2/24Lawrence, KS 1525 (2.6) $\dfrac{6}{.4\%} + \dfrac{2}{8\%}$ Steve Wilson, 2/24Lawrence, KS 1528 (2.4) $\dfrac{6}{.4\%} + 28$ Steve Wilson, 2/24Lawrence, KS 1530 (2.4) $\dfrac{62 - .8}{4\%}$ Steve Wilson, 2/24Lawrence, KS 1532 (2.6) $\dfrac{6.8}{.\overline{4}\%} + 2$ Steve Wilson, 2/24Lawrence, KS 1535 (2.8) $\dfrac{6.8\overline{2}}{.\overline{4}\%}$ Steve Wilson, 2/24Lawrence, KS 1536 (2.8) $\dfrac{6}{.4\%} + \dfrac{8}{.\overline{2}}$ Steve Wilson, 2/24Lawrence, KS 1538 (2.8) $\dfrac{4 - .6}{.\overline{2}\%} + 8$ Steve Wilson, 2/24Lawrence, KS 1540 (2.6) $\dfrac{6}{.4\%} + \dfrac{8}{.2}$ Steve Wilson, 2/24Lawrence, KS 1542 (2.2) $\dfrac{62}{4\%} - 8$ Steve Wilson, 2/24Lawrence, KS 1544 (3.4) $\dfrac{6!}{.4} - 2^8$ Steve Wilson, 2/24Lawrence, KS 1548 (2.4) $\dfrac{86 \times 4}{.\overline{2}}$ Steve Wilson, 2/24Lawrence, KS 1550 (2.2) $\dfrac{62}{(8 - 4)\%}$ Steve Wilson, 2/24Lawrence, KS 1552 (2.2) $8 \times \left( \dfrac{4}{2\%} - 6 \right)$ Steve Wilson, 2/24Lawrence, KS 1556 (3.6) $\dfrac{6!}{.\overline{4}} - 8^2$ Steve Wilson, 2/24Lawrence, KS 1557 (3.6) $\dfrac{6! - 28}{.\overline{4}}$ Steve Wilson, 2/24Lawrence, KS 1558 (2.2) $\dfrac{62}{4\%} + 8$ Steve Wilson, 2/24Lawrence, KS 1560 (2.6) $\dfrac{8 + 2.4}{.\overline{6}\%}$ Steve Wilson, 2/24Lawrence, KS 1562 (3.2) $842 + 6!$ Carsten Holtorf, 5/17Overland Park, KS 1564 (3.2) $\dfrac{6}{4\pmf} + 8^2$ Steve Wilson, 2/24Lawrence, KS 1566 (3.8) $(6! - 4!) \times \dfrac{2}{.\overline{8}}$ Steve Wilson, 2/24Lawrence, KS 1570 (2.2) $\dfrac{628}{.4}$ Steve Wilson, 2/24Lawrence, KS 1575 (2.6) $\dfrac{4 \times 2 + 6}{.\overline{8}\%}$ Steve Wilson, 2/24Lawrence, KS 1576 (2.2) $4 \times \left( \dfrac{8}{2\%} - 6 \right)$ Steve Wilson, 2/24Lawrence, KS 1580 (3.4) $\dfrac{2^6 - .8}{4\%}$ Steve Wilson, 2/24Lawrence, KS 1582 (2.4) $\dfrac{6}{.4\%} + 82$ Steve Wilson, 2/24Lawrence, KS 1584 (2.8) $\dfrac{4 - 8 \times 6\%}{.\overline{2}\%}$ Steve Wilson, 2/24Lawrence, KS 1585 (3.4) $\dfrac{8^2 - .6}{4\%}$ Steve Wilson, 2/24Lawrence, KS 1588 (2.4) $(8 - 6\%) \times \dfrac{4}{2\%}$ Steve Wilson, 2/24Lawrence, KS 1590 (3.0) $\dfrac{6 + \dfrac{8\%}{.\overline{2}}}{.4\%}$ Steve Wilson, 2/24Lawrence, KS 1592 (3.2) $\dfrac{2^6}{4\%} - 8$ Steve Wilson, 2/24Lawrence, KS 1594 (2.2) $\dfrac{8 \times 4}{2\%} - 6$ Steve Wilson, 2/24Lawrence, KS 1595 (3.4) $\dfrac{6! - 82}{.4}$ Steve Wilson, 2/24Lawrence, KS 1596 (3.8) $\dfrac{6!}{.\overline{4}} - \left(\dfrac82\right)!$ Steve Wilson, 2/24Lawrence, KS 1597 (2.4) $\dfrac{8 \times 4 - 6\%}{2\%}$ Steve Wilson, 2/24Lawrence, KS 1598 (3.4) $\dfrac{2^6 + 8\%}{4\%}$ Steve Wilson, 2/24Lawrence, KS 1600 (2.2) $\dfrac{64 \times 2}{8\%}$ Steve Wilson, 2/24Lawrence, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601+).