$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

## Integermania!

#### First Four Naturals

The first four natural numbers are 1, 2, 3, and 4. Create each of the positive integers using one copy of each number, and any standard operations.  All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601+)

 801 (2.2) $\dfrac{24}{3\%} + 1$ Paolo Pellegrini, 10/11Martina Franca, Italy 802 (2.8) $\dfrac{4 + 1\%}{(.2 + .3)\%}$ Paolo Pellegrini, 10/11Martina Franca, Italy 803 (2.2) $4 \times \dfrac{2}{1\%} + 3$ Paolo Pellegrini, 10/11Martina Franca, Italy 804 (3.4) $\dfrac{1}{2^{-3}\%} + 4$ Paolo Pellegrini, 10/11Martina Franca, Italy 805 (3.6) $\dfrac{4!}{3\%} + \dfrac{1}{.2}$ Paolo Pellegrini, 12/11Martina Franca, Italy 806 (2.2) $2 \times \left( \dfrac{4}{1\%} + 3 \right)$ Paolo Pellegrini, 10/11Martina Franca, Italy 807 (3.6) $\dfrac{4! + 21\%}{3\%}$ Steve Wilson, 2/12Raytown, MO 808 (3.2) $\dfrac{3^4}{.1} - 2$ Paolo Pellegrini, 12/11Martina Franca, Italy 809 (4.0) $.\overline{1}\%^{-2} \pm - 4 + 3$ Steve Wilson, 6/12Raytown, MO 810 (2.6) $1.2 \times \dfrac{3}{.\overline{4}\%}$ Steve Wilson, 12/11Raytown, MO 811 (4.0) $.\overline{1}\%^{-2} \pm + 4 - 3$ Steve Wilson, 6/12Raytown, MO 812 (2.2) $4 \times \left( \dfrac{2}{1\%} + 3 \right)$ Paolo Pellegrini, 12/11Martina Franca, Italy 813 (3.8) $.\overline{1}\%^{2-4} \pm + 3$ Steve Wilson, 6/12Raytown, MO 814 (4.4) $.\overline{1}\%^{-2} \pm + 3! - \sqrt{4}$ Steve Wilson, 6/12Raytown, MO 815 (4.2) $.\overline{1}\%^{-2} \pm + 3 + \sqrt{4}$ Steve Wilson, 6/12Raytown, MO 816 (3.6) $(1 + 2\%) \times \dfrac{4!}{3\%}$ Paolo Pellegrini, 12/11Martina Franca, Italy 817 (4.0) $.\overline{1}\%^{-2} \pm + 3 + 4$ Paolo Pellegrini, 5/12Martina Franca, Italy 818 (3.8) $\dfrac{4!}{3\%} + \dfrac{2}{.\overline{1}}$ Steve Wilson, 2/12Raytown, MO 819 (3.4) $\left( 4^{3!} - 1 \right) \times .2$ Paolo Pellegrini, 2/12Martina Franca, Italy 820 (2.2) $\dfrac{41}{(2 + 3)\%}$ Steve Wilson, 12/11Raytown, MO 821 (3.4) $\dfrac{4!}{3\%} + 21$ Steve Wilson, 2/12Raytown, MO 822 (4.0) $.1^{-2} + (3!)! + \sqrt{4}$ Paolo Pellegrini, 5/12Martina Franca, Italy 823 (5.2) $(3!)! + \dfrac{\sqrt{4}}{2\%} - \log(1 \pm)$ Steve Wilson, 10/12Raytown, MO 824 (3.4) $\left( \dfrac{2}{1\%} + 3! \right) \times 4$ Paolo Pellegrini, 2/12Martina Franca, Italy 825 (2.2) $\dfrac{31 + 2}{4\%}$ Paolo Pellegrini, 1/12Martina Franca, Italy 826 (2.0) $413 \times 2$ Shawn Graf, 12/06Overland Park, KS 827 (3.2) $\dfrac{2 \times .\overline{4} + 3\%}{.\overline{1}\%}$ Paolo Pellegrini, 1/12Martina Franca, Italy 828 (2.4) $23 \times \dfrac{4}{.\overline{1}}$ Paolo Pellegrini, 1/12Martina Franca, Italy 829 (4.0) $\sqrt{ \sqrt{ 3^{4!}}} + .1^{-2}$ Paolo Pellegrini, 5/12Martina Franca, Italy 830 (2.4) $\dfrac{2 \times 4 + .3}{1\%}$ Steve Wilson, 1/12Raytown, MO 831 (3.8) $\dfrac{3}{4 \pmf} + .\overline{1}^{-2}$ Paolo Pellegrini, 5/12Martina Franca, Italy 832 (3.6) $13 \times \sqrt{ \sqrt{ 2^{4!}}}$ Steve Wilson, 4/12Raytown, MO 833 (3.4) $\dfrac{4 + 1 - 2 \pmf}{3! \pmf}$ Paolo Pellegrini, 2/12Martina Franca, Italy 834 (2.4) $\dfrac{ \dfrac{1}{4\%\%} + 2}{3}$ Paolo Pellegrini, 1/12Martina Franca, Italy 835 (2.8) $\dfrac{1 + .2\%}{3 \times 4\%\%}$ Paolo Pellegrini, 1/12Martina Franca, Italy 836 (3.8) $(3!)! + \left( \dfrac{1}{.2} \right)! - 4$ Paolo Pellegrini, 6/12Martina Franca, Italy 837 (4.4) $\dfrac{ \dfrac{\sqrt{4\%}}{.\overline{2}\%} + 3}{.\overline{1}}$ Steve Wilson, 7/12Raytown, MO 838 (3.6) $(3!)! + (4 + 1)! - 2$ Steve Wilson, 5/12Raytown, MO 839 (3.8) $(3!)! + \left( \dfrac{2}{.4} \right)! - 1$ Paolo Pellegrini, 6/12Martina Franca, Italy 840 (2.6) $\dfrac{ \dfrac{1}{.4\%} + 2}{.3}$ Steve Wilson, 1/12Raytown, MO 841 (3.2) $\sqrt{(31 - 2)^4}$ Paolo Pellegrini, 2/12Martina Franca, Italy 842 (3.6) $(3!)! + (4 + 1)! + 2$ Steve Wilson, 5/12Raytown, MO 843 (5.2) $(3!)! + (4 + 1)! + \coth \ln \sqrt{2}$ Steve Wilson, 10/12Raytown, MO 844 (3.4) $(3!)! + 124$ Paolo Pellegrini, 2/12Martina Franca, Italy 845 (3.4) $\dfrac{13^2}{\sqrt{4\%}}$ Paolo Pellegrini, 6/12Martina Franca, Italy 846 (3.8) $(3!)^4 - \dfrac{1}{.\overline{2}\%}$ Paolo Pellegrini, 6/12Martina Franca, Italy 847 (4.8) $(4 + 3) \times ((\cot \arctan .2)! + 1)$ Steve Wilson, 11/12Raytown, MO 848 (3.4) $\left( \dfrac{1}{3\%} + 2 \right) \times 4!$ Paolo Pellegrini, 6/12Martina Franca, Italy 849 (3.6) $\dfrac{2 - .3}{\sqrt{4} \pmf} - 1$ Steve Wilson, 8/12Raytown, MO 850 (2.2) $\dfrac{13 + 4}{2\%}$ Steve Wilson, 1/12Raytown, MO 851 (3.6) $\dfrac{2 - .3}{\sqrt{4} \pmf} + 1$ Paolo Pellegrini, 7/12Martina Franca, Italy 852 (2.0) $213 \times 4$ Tina Redlinger, 9/07Olathe, KS 853 (4.0) $.\overline{1} \% ^{-2} \pm + 43$ Paolo Pellegrini, 7/12Martina Franca, Italy 854 (3.2) $(.\overline{4} + 3\%) \times \dfrac{2}{.\overline{1}\%}$ Paolo Pellegrini, 3/12Martina Franca, Italy 855 (2.8) $\dfrac{3 + 1 - .2}{.\overline{4}\%}$ Steve Wilson, 1/12Raytown, MO 856 (4.0) $1 \pm ^{-2} \pm - 3! \times 4!$ Paolo Pellegrini, 7/12Martina Franca, Italy 857 (4.0) $\sqrt{ .\overline{1}\% ^{-2}} - 43$ Paolo Pellegrini, 7/12Martina Franca, Italy 858 (3.8) $\dfrac{3}{\sqrt{.\overline{1}} \%} - 42$ Paolo Pellegrini, 7/12Martina Franca, Italy 859 (4.0) $(.\overline{3}\%)^{-2} \% - 41$ Paolo Pellegrini, 10/12Martina Franca, Italy 860 (2.2) $43 \times \dfrac{2}{.1}$ Carolyn Neptune, 8/11Prairie Village, KS 861 (4.8) $3!^2 \times 4! + \log(1 \pm)$ Steve Wilson, 11/12Raytown, MO 862 (2.0) $431 \times 2$ Jay Roath, 3/06Overland Park, KS 863 (3.4) $3!^2 \times 4! - 1$ Paolo Pellegrini, 10/12Martina Franca, Italy 864 (2.8) $\dfrac{3 - 2 - 4\%}{.\overline{1}\%}$ Steve Wilson, 1/12Raytown, MO 865 (3.4) $3!^2 \times 4! + 1$ Paolo Pellegrini, 10/12Martina Franca, Italy 866 (3.6) $(3!)! \times 1.2 + \sqrt{4}$ Steve Wilson, 8/12Raytown, MO 867 (4.8) $3!^2 \times 4! - \log(1 \pm)$ Steve Wilson, 11/12Raytown, MO 868 (3.4) $(3!)! \times 1.2 + 4$ Steve Wilson, 8/12Raytown, MO 869 (3.6) $\dfrac{21}{4! \pmf} - 3!$ Steve Wilson, 9/12Raytown, MO 870 (3.8) $\dfrac{(3!)! - 4!}{1 - .2}$ Steve Wilson, 8/23Lawrence, KS 871 (5.2) $3!^2 \times 4! - \log(1\%\%\pm)$ Steve Wilson, 11/12Raytown, MO 872 (3.4) $\dfrac{21}{4! \pmf} - 3$ Paolo Pellegrini, 8/12Martina Franca, Italy 873 (3.8) $\dfrac{ \dfrac{2}{\sqrt{4}\%} - 3}{.\overline{1}}$ Paolo Pellegrini, 8/12Martina Franca, Italy 874 (3.6) $\sqrt[.1]{2} - \dfrac{3}{(\sqrt{4})\%}$ Paolo Pellegrini, 8/12Martina Franca, Italy 875 (2.4) $\dfrac{3 + \dfrac12}{.4\%}$ Steve Wilson, 3/12Raytown, MO 876 (3.4) $4!^2 + \dfrac{3}{1\%}$ Steve Wilson, 8/12Raytown, MO 877 (4.2) $(.\overline{3}\%)^{-2}\% - 4! + 1$ Steve Wilson, 11/12Raytown, MO 878 (3.4) $\dfrac{21}{4! \pmf} + 3$ Paolo Pellegrini, 8/12Martina Franca, Italy 879 (4.2) $\left(\sqrt{(.\overline{3}\%)^{-4}}\right)\% - 21$ Steve Wilson, 11/12Raytown, MO 880 (3.0) $\dfrac{4}{(.\overline{12} + .\overline{3})\%}$ Paolo Pellegrini, 3/12Martina Franca, Italy 881 (3.6) $\dfrac{21}{4! \pmf} + 3!$ Paolo Pellegrini, 8/12Martina Franca, Italy 882 (2.8) $\dfrac{3 - 1 - 4\%}{.\overline{2}\%}$ Steve Wilson, 3/12Raytown, MO 883 (5.2) $\ln\sqrt{\exp \left( \dfrac{2}{.\overline{1}\%} - 34 \right)}$ Steve Wilson, 8/23Lawrence, KS 884 (3.6) $(3!)! \times 1.\overline{2} + 4$ Steve Wilson, 10/12Raytown, MO 885 (3.6) $(.\overline{1} + 2\%) \times \dfrac{.3}{.\overline{4}\%\%}$ Paolo Pellegrini, 10/12Martina Franca, Italy 886 (4.0) $(.\overline{3}\%)^{-2} \% - 14$ Paolo Pellegrini, 10/12Martina Franca, Italy 887 (3.8) $\dfrac{\sqrt{4}}{.\overline{2}\%} - 13$ Steve Wilson, 9/12Raytown, MO 888 (2.8) $\dfrac{2 + 1 - 4\%}{.\overline{3}\%}$ Steve Wilson, 3/12Raytown, MO 889 (3.2) $\dfrac{.\overline{4}}{(2 + 3)\%\%} + .\overline{1}$ Paolo Pellegrini, 11/12Martina Franca, Italy 890 (3.8) $\dfrac{ \dfrac{1}{4\%\%} - (3!)!}{2}$ Paolo Pellegrini, 11/12Martina Franca, Italy 891 (4.0) $(.\overline{1}\%)^{-2} \pm + 3^4$ Paolo Pellegrini, 11/12Martina Franca, Italy 892 (3.8) $\dfrac{3}{\left(\sqrt{.\overline{1}}\right)\%} - 4 \times 2$ Steve Wilson, 8/23Lawrence, KS 893 (4.0) $\dfrac{\sqrt{4}}{.\overline{2}\%} - 3! - 1$ Steve Wilson, 9/12Raytown, MO 894 (2.8) $\dfrac{4 - 1 - 2\%}{.\overline{3}\%}$ Steve Wilson, 3/12Raytown, MO 895 (3.6) $\dfrac{(3!)! - 4}{1 - .2}$ Paolo Pellegrini, 11/12Martina Franca, Italy 896 (2.6) $\dfrac{2 + 1}{.\overline{3}\%} - 4$ Steve Wilson, 8/12Raytown, MO 897 (3.8) $\dfrac{\sqrt{4}}{.\overline{2}\%} - 3 \times 1$ Steve Wilson, 9/12Raytown, MO 898 (2.6) $\dfrac{3 + 1}{.\overline{4}\%} - 2$ Paolo Pellegrini, 3/12Martina Franca, Italy 899 (3.4) $(4! + 3!)^2 - 1$ Ben Kerkhoff, 7/12Lawrence, KS 900 (2.2) $12 \times \dfrac{3}{4\%}$ Brett Wolverton, 10/10Overland Park, KS 901 (3.4) $(4! + 3!)^2 + 1$ Ben Kerkhoff, 7/12Lawrence, KS 902 (2.6) $\dfrac{3 + 1}{.\overline{4}\%} + 2$ Paolo Pellegrini, 3/12Martina Franca, Italy 903 (2.0) $21 \times 43$ Dave Jones, 10/07Coventry, England 904 (2.6) $\dfrac{2 + 1}{.\overline{3}\%} + 4$ Paolo Pellegrini, 3/12Martina Franca, Italy 905 (3.6) $\dfrac{(3!)! + 4}{1 - .2}$ Steve Wilson, 8/23Lawrence, KS 906 (2.8) $\dfrac{4 - 1 + 2\%}{.\overline{3}\%}$ Steve Wilson, 12/12Raytown, MO 907 (4.0) $\sqrt{ (.\overline{1}\%)^{-2}} + 4 + 3$ Steve Wilson, 8/23Lawrence, KS 908 (3.8) $\dfrac{3}{\left(\sqrt{.\overline{1}}\right)\%} + 4 \times 2$ Steve Wilson, 8/23Lawrence, KS 909 (4.2) $\sqrt{ (.\overline{1}\%)^{-2}} + \sqrt{3^4}$ Steve Wilson, 8/23Lawrence, KS 910 (4.2) $\sqrt{ (.\overline{1}\%)^{-2}} + 3! + 4$ Steve Wilson, 8/23Lawrence, KS 911 (4.2) $(.\overline{2}\%)^{-3}\%\pm - \dfrac14$ Steve Wilson, 8/23Lawrence, KS 912 (2.8) $\dfrac{2 + 1 + 4\%}{.\overline{3}\%}$ Steve Wilson, 12/12Raytown, MO 913 (3.8) $\dfrac{\sqrt{4}}{.\overline{2}\%} + 13$ Steve Wilson, 8/23Lawrence, KS 914 (4.0) $(.\overline{3}\%)^{-2}\% + 14$ Steve Wilson, 8/23Lawrence, KS 915 (3.8) $(3!)! + \dfrac{4 - .1}{2\%}$ Steve Wilson, 8/23Lawrence, KS 916 (3.8) $\dfrac{3}{\left(\sqrt{.\overline{1}}\right)\%} + 4^2$ Steve Wilson, 8/23Lawrence, KS 918 (2.8) $\dfrac{4 - 3 + 2\%}{.\overline{1}\%}$ Steve Wilson, 12/12Raytown, MO 919 (3.6) $(3!)! + \dfrac{4}{2\%} - 1$ Steve Wilson, 8/23Lawrence, KS 920 (2.2) $2.3 \times \dfrac{4}{1\%}$ Steve Wilson, 12/12Raytown, MO 921 (3.6) $(3!)! + \dfrac{4}{2\%} + 1$ Steve Wilson, 8/23Lawrence, KS 924 (2.0) $231 \times 4$ Tina Redlinger, 10/07Olathe, KS 925 (3.6) $(3!)! + \dfrac{4.1}{2\%}$ Steve Wilson, 8/23Lawrence, KS 928 (3.8) $(1\pm^{-2})\pm + 4! \times 3$ Steve Wilson, 8/23Lawrence, KS 929 (3.8) $(.\overline{1})^{-3} + \dfrac{4}{2\%}$ Steve Wilson, 8/23Lawrence, KS 930 (3.8) $\dfrac{(3!)! + 4!}{1 - .2}$ Steve Wilson, 8/23Lawrence, KS 931 (3.8) $\dfrac{\sqrt{4}}{.\overline{2}\%} + 31$ Steve Wilson, 8/23Lawrence, KS 934 (4.0) $\sqrt{ (.\overline{1}\%)^{-2}} + 34$ Steve Wilson, 8/23Lawrence, KS 936 (2.8) $\dfrac{3 - 2 + 4\%}{.\overline{1}\%}$ Steve Wilson, 12/12Raytown, MO 937 (3.2) $31^2 - 4!$ Shannon O'Neill, 6/12Lawrence, KS 940 (3.4) $\dfrac{3^2 + .4}{1\%}$ Steve Wilson, 8/23Lawrence, KS 941 (4.0) $(.\overline{3}\%)^{-2}\% + 41$ Steve Wilson, 8/23Lawrence, KS 942 (3.8) $\dfrac{3}{\left(\sqrt{.\overline{1}}\right)\%} + 42$ Steve Wilson, 8/23Lawrence, KS 943 (2.0) $41 \times 23$ Tina Redlinger, 10/07Olathe, KS 945 (2.6) $\dfrac{3 + 1.2}{.\overline{4}\%}$ Steve Wilson, 12/12Raytown, MO 949 (3.4) $\sqrt[.1]{2} - \dfrac{3}{4\%}$ Steve Wilson, 8/23Lawrence, KS 950 (2.4) $\dfrac{2 + \dfrac{3}{.4} }{1\%}$ Steve Wilson, 12/12Raytown, MO 952 (3.4) $\sqrt[.1]{2} - 4! \times 3$ Steve Wilson, 8/23Lawrence, KS 957 (3.0) $31^2 - 4$ John Hepfer, 9/07Shawnee, KS 958 (3.4) $.1^{-3} - 42$ Steve Wilson, 8/23Lawrence, KS 959 (3.2) $\sqrt{31^4} - 2$ John Hepfer, 8/07Shawnee, KS 960 (2.6) $\dfrac{3 - 2 - 4\%}{.1\%}$ Steve Wilson, 12/12Raytown, MO 961 (3.0) $31^{4-2}$ Steve Wilson, 8/23Lawrence, KS 963 (3.2) $\sqrt{31^4} + 2$ John Hepfer, 8/07Shawnee, KS 964 (3.6) $\sqrt[.2]{4} - \dfrac{3!}{.1}$ Steve Wilson, 8/23Lawrence, KS 965 (3.0) $31^2 + 4$ John Hepfer, 9/07Shawnee, KS 968 (3.8) $(1\%^{-4})\%\pm - 32$ Steve Wilson, 8/23Lawrence, KS 969 (3.4) $\dfrac{\sqrt{4}}{2\pmf} - 31$ Steve Wilson, 8/23Lawrence, KS 970 (3.6) $\dfrac{ \dfrac{2}{\sqrt{4}} - 3\%}{1\pmf}$ Steve Wilson, 8/23Lawrence, KS 971 (3.8) $\dfrac{\sqrt{4} - 3!\%}{2\pmf} + 1$ Steve Wilson, 8/23Lawrence, KS 972 (3.0) $3^4 \times 12$ Kevin Solecki, 8/08Olathe, KS 973 (3.8) $\dfrac{\sqrt{4}}{2\pmf} - \dfrac{3}{.\overline{1}}$ Steve Wilson, 8/23Lawrence, KS 974 (3.6) $.1^{-3} - 4! - 2$ Steve Wilson, 8/23Lawrence, KS 976 (3.4) $\dfrac{3 - 1}{2\pmf} - 4!$ Steve Wilson, 8/23Lawrence, KS 977 (3.8) $(1\%^{-4})\%\pm - 23$ Steve Wilson, 8/23Lawrence, KS 978 (3.6) $.1^{-3} - 4! + 2$ Steve Wilson, 8/23Lawrence, KS 980 (2.6) $\dfrac{3 - 1 - 4\%}{.2\%}$ Steve Wilson, 12/12Raytown, MO 981 (3.2) $\sqrt[.1]{2} - 43$ Steve Wilson, 8/23Lawrence, KS 984 (3.4) $.1^{-3} - 2^4$ Steve Wilson, 8/23Lawrence, KS 985 (3.2) $31^2 + 4!$ Wei Zhang, 6/12Lawrence, KS 986 (3.6) $\dfrac{\sqrt{4} - 3\%}{2\pmf} + 1$ Steve Wilson, 8/23Lawrence, KS 987 (3.4) $\dfrac{\sqrt{4}}{2\pmf} - 13$ Steve Wilson, 8/23Lawrence, KS 988 (3.6) $.1^{-3} - \dfrac{4!}{2}$ Steve Wilson, 8/23Lawrence, KS 990 (2.8) $\dfrac{4 \times .3 + 1}{.\overline{2}\%}$ Steve Wilson, 12/12Raytown, MO 991 (3.8) $(1\%^{-4})\%\pm - 3^2$ Steve Wilson, 8/23Lawrence, KS 992 (3.4) $.1^{-3} - 4 \times 2$ Steve Wilson, 8/23Lawrence, KS 993 (3.2) $\sqrt[.2]{4} - 31$ Steve Wilson, 8/23Lawrence, KS 994 (3.4) $.1^{-3} - 4 - 2$ Steve Wilson, 8/23Lawrence, KS 995 (2.6) $\dfrac{3 + 1 - 2\%}{.4\%}$ Steve Wilson, 12/12Raytown, MO 996 (2.4) $\dfrac{2 + 1}{.3\%} - 4$ Steve Wilson, 12/12Raytown, MO 997 (3.4) $\dfrac{\sqrt{4}}{2\pmf} - 3 \times 1$ Steve Wilson, 8/23Lawrence, KS 998 (2.4) $\dfrac{3 + 1}{.4\%} - 2$ Katie Roberts, 6/12Washington, DC 999 (3.4) $\dfrac{\sqrt{4}}{2\pmf} - 1^3$ Steve Wilson, 8/23Lawrence, KS 1000 (2.2) $\dfrac{3 \times 2 + 4}{1\%}$ Steve Wilson, 12/12Raytown, MO 1001 (3.4) $\dfrac{\sqrt{4}}{2\pmf} + 1^3$ Steve Wilson, 8/23Lawrence, KS 1002 (2.4) $\dfrac{3 + 1}{.4\%} + 2$ Steve Wilson, 7/13Lawrence, KS 1003 (3.4) $\dfrac{\sqrt{4}}{2\pmf} + 3 \times 1$ Steve Wilson, 8/23Lawrence, KS 1004 (2.4) $\dfrac{2 + 1}{.3\%} + 4$ Steve Wilson, 7/13Lawrence, KS 1005 (2.6) $\dfrac{3 + 1 + 2\%}{.4\%}$ Steve Wilson, 7/13Lawrence, KS 1006 (3.4) $.1^{-3} + 4 + 2$ Steve Wilson, 8/23Lawrence, KS 1007 (3.6) $\dfrac{\sqrt{4}}{2\pmf} + 3! + 1$ Steve Wilson, 8/23Lawrence, KS 1008 (3.4) $.1^{-3} + 4 \times 2$ Steve Wilson, 8/23Lawrence, KS 1009 (3.6) $\sqrt[.1]{2} - \dfrac{3}{\sqrt{4\%}}$ Steve Wilson, 8/23Lawrence, KS 1010 (3.8) $.1^{-3} + \dfrac{\sqrt{4}}{.2}$ Steve Wilson, 8/23Lawrence, KS 1011 (3.2) $\sqrt[.2]{4} - 13$ Steve Wilson, 8/23Lawrence, KS 1012 (3.2) $\sqrt[.1]{2} - 4 \times 3$ Steve Wilson, 8/23Lawrence, KS 1013 (3.4) $\dfrac{\sqrt{4}}{2\pmf} + 13$ Steve Wilson, 8/23Lawrence, KS 1014 (3.4) $\sqrt[.1]{2} - 3! - 4$ Steve Wilson, 8/23Lawrence, KS 1015 (3.4) $\sqrt[.1]{2} - \sqrt{3^4}$ Steve Wilson, 8/23Lawrence, KS 1016 (3.4) $.1^{-3} + 2^4$ Steve Wilson, 8/23Lawrence, KS 1017 (3.2) $\sqrt[.1]{2} - 4 - 3$ Steve Wilson, 8/23Lawrence, KS 1018 (3.4) $\sqrt[.1]{2} - 3 \times \sqrt{4}$ Steve Wilson, 8/23Lawrence, KS 1019 (3.4) $\sqrt[.1]{2} - 3 - \sqrt{4}$ Steve Wilson, 8/23Lawrence, KS 1020 (2.6) $\dfrac{2.4 + 1}{.\overline{3}\%}$ Steve Wilson, 7/13Lawrence, KS 1021 (3.2) $\sqrt[.1]{4 - 2} - 3$ Steve Wilson, 8/23Lawrence, KS 1022 (3.2) $\sqrt[.2]{4} - 3 + 1$ Steve Wilson, 8/23Lawrence, KS 1023 (3.0) $4^{3+2} - 1$ Steve Wilson, 8/23Lawrence, KS 1024 (3.0) $4^{3+2} \times 1$ Steve Wilson, 8/23Lawrence, KS 1025 (3.0) $4^{3+2} + 1$ Steve Wilson, 8/23Lawrence, KS 1026 (3.2) $\sqrt[.2]{4} + 3 - 1$ Steve Wilson, 8/23Lawrence, KS 1027 (3.2) $\sqrt[.1]{4 - 2} + 3$ Steve Wilson, 8/23Lawrence, KS 1028 (3.2) $\sqrt[.2]{4} + 3 + 1$ Steve Wilson, 8/23Lawrence, KS 1029 (3.4) $\sqrt[.1]{2} + 3 + \sqrt{4}$ Steve Wilson, 8/23Lawrence, KS 1030 (3.4) $\sqrt[.1]{2} + 3 \times \sqrt{4}$ Steve Wilson, 8/23Lawrence, KS 1031 (3.2) $\sqrt[.1]{2} + 4 + 3$ Steve Wilson, 8/23Lawrence, KS 1032 (3.4) $\sqrt[.1]{2} + \dfrac{4!}{3}$ Steve Wilson, 8/23Lawrence, KS 1033 (3.4) $\sqrt[.1]{2} + \sqrt{3^4}$ Steve Wilson, 8/23Lawrence, KS 1034 (3.4) $\sqrt[.1]{2} + 3! + 4$ Steve Wilson, 8/23Lawrence, KS 1036 (3.2) $\sqrt[.1]{2} + 4 \times 3$ Steve Wilson, 8/23Lawrence, KS 1037 (3.2) $\sqrt[.2]{4} + 13$ Steve Wilson, 8/23Lawrence, KS 1039 (3.6) $\sqrt[.1]{2} + \dfrac{3}{\sqrt{4\%}}$ Steve Wilson, 8/23Lawrence, KS 1040 (2.6) $\dfrac{3 - 2 + 4\%}{.1\%}$ Steve Wilson, 7/13Lawrence, KS 1042 (3.4) $.1^{-3} + 42$ Steve Wilson, 8/23Lawrence, KS 1045 (3.4) $\sqrt[.1]{2} + 4! - 3$ Steve Wilson, 8/23Lawrence, KS 1047 (3.4) $\sqrt{\sqrt[.1]{4}} + 23$ Steve Wilson, 8/23Lawrence, KS 1048 (3.4) $\sqrt[.1]{2} + 3! \times 4$ Steve Wilson, 8/23Lawrence, KS 1049 (3.4) $\dfrac{4! - 3}{2\%} - 1$ Steve Wilson, 8/23Lawrence, KS 1050 (2.2) $\dfrac{42}{(3 + 1)\%}$ Steve Wilson, 7/13Lawrence, KS 1051 (3.4) $\sqrt[.1]{2} + 4! + 3$ Steve Wilson, 8/23Lawrence, KS 1054 (3.4) $\sqrt[.2]{4} + \dfrac{3}{.1}$ Steve Wilson, 8/23Lawrence, KS 1055 (3.2) $\sqrt[.2]{4} + 31$ Steve Wilson, 8/23Lawrence, KS 1056 (3.4) $\sqrt{\sqrt[.1]{4}} + 32$ Steve Wilson, 8/23Lawrence, KS 1058 (3.2) $\sqrt[.1]{2} + 34$ Steve Wilson, 8/23Lawrence, KS 1060 (3.6) $\sqrt[.1]{2} + \sqrt{3!^4}$ Steve Wilson, 8/23Lawrence, KS 1064 (3.6) $(1\pm^{-2})\pm + 4^3$ Steve Wilson, 8/23Lawrence, KS 1067 (3.2) $\sqrt[.1]{2} + 43$ Steve Wilson, 8/23Lawrence, KS 1072 (2.8) $4 \times \left( \dfrac{.3}{.\overline{1}\%} - 2 \right)$ Steve Wilson, 7/13Lawrence, KS 1074 (2.8) $3 \times \left( \dfrac{.4}{.\overline{1}\%} - 2 \right)$ Steve Wilson, 7/13Lawrence, KS 1078 (2.8) $4 \times \dfrac{.3}{.\overline{1}\%} - 2$ Steve Wilson, 7/13Lawrence, KS 1080 (2.6) $3 \times \dfrac{2}{(1 - .\overline{4})\%}$ Steve Wilson, 7/13Lawrence, KS 1081 (3.6) $(1\pm^{-2})\pm + 3^4$ Steve Wilson, 8/23Lawrence, KS 1082 (2.8) $4 \times \dfrac{.3}{.\overline{1}\%} + 2$ Steve Wilson, 7/13Lawrence, KS 1084 (3.6) $\sqrt[.2]{4} + \dfrac{3!}{.1}$ Steve Wilson, 8/23Lawrence, KS 1086 (2.8) $3 \times \left( \dfrac{.4}{.\overline{1}\%} + 2 \right)$ Steve Wilson, 7/13Lawrence, KS 1088 (2.8) $4 \times \left( \dfrac{.3}{.\overline{1}\%} + 2 \right)$ Steve Wilson, 7/13Lawrence, KS 1089 (3.0) $(34 - 1)^2$ Tien Huynh, 9/10Olathe, KS 1096 (3.4) $\sqrt[.1]{2} + 4! \times 3$ Steve Wilson, 8/23Lawrence, KS 1099 (3.4) $\sqrt[.1]{2} + \dfrac{3}{4\%}$ Steve Wilson, 8/23Lawrence, KS 1100 (2.2) $\dfrac{4 \times 2 + 3}{1\%}$ Steve Wilson, 7/13Lawrence, KS 1105 (3.4) $\sqrt[.1]{2} + 3^4$ Steve Wilson, 8/23Lawrence, KS 1110 (2.8) $\dfrac{ \dfrac{1}{.\overline{4}\%} - 3}{.2}$ Steve Wilson, 7/13Lawrence, KS 1120 (2.4) $(3 - .2) \times \dfrac{4}{1\%}$ Steve Wilson, 7/13Lawrence, KS 1122 (2.8) $\dfrac{1}{.2\% \times .\overline{4}} - 3$ Steve Wilson, 7/13Lawrence, KS 1124 (2.6) $\dfrac{3 + 2}{.\overline{4}\%} - 1$ Steve Wilson, 7/13Lawrence, KS 1125 (2.6) $\dfrac{3 + 2}{.\overline{4}\%} \times 1$ Steve Wilson, 7/13Lawrence, KS 1126 (2.6) $\dfrac{3 + 2}{.\overline{4}\%} + 1$ Steve Wilson, 7/13Lawrence, KS 1128 (2.8) $\dfrac{1}{.2\% \times .\overline{4}} + 3$ Steve Wilson, 7/13Lawrence, KS 1134 (2.4) $42 \times \dfrac{3}{.\overline{1}}$ Steve Wilson, 7/13Lawrence, KS 1135 (3.4) $\dfrac{4! - 1.3}{2\%}$ Steve Wilson, 8/23Lawrence, KS 1136 (3.4) $\dfrac{4!}{2\%}$ Steve Wilson, 8/23Lawrence, KS 1137 (2.8) $\dfrac{4 - .21}{.\overline{3}\%}$ Steve Wilson, 7/13Lawrence, KS 1139 (2.8) $\dfrac{4 - .2}{.\overline{3}\%} - 1$ Steve Wilson, 7/13Lawrence, KS 1140 (2.4) $(4 - .2) \times \dfrac{3}{1\%}$ Steve Wilson, 7/13Lawrence, KS 1141 (2.8) $\dfrac{4 - .2}{.\overline{3}\%} + 1$ Steve Wilson, 7/13Lawrence, KS 1143 (3.0) $\dfrac{4 - .2 + 1\%}{.\overline{3}\%}$ Steve Wilson, 7/13Lawrence, KS 1144 (3.6) $\sqrt{\sqrt[.1]{4}} + (3 + 2)!$ Steve Wilson, 8/23Lawrence, KS 1147 (3.4) $\dfrac{4! - 1}{2\%} - 3$ Steve Wilson, 8/23Lawrence, KS 1150 (2.6) $\dfrac{ \dfrac{3}{.\overline{1}} - 4}{2\%}$ Steve Wilson, 7/13Lawrence, KS 1152 (2.4) $32 \times \dfrac{4}{.\overline{1}}$ Steve Wilson, 7/13Lawrence, KS 1153 (3.4) $\dfrac{4! - 1}{2\%} + 3$ Steve Wilson, 8/23Lawrence, KS 1155 (3.0) $34^2 - 1$ John Hepfer, 9/07Shawnee, KS 1156 (3.0) $34^2 \times 1$ Melissa Kuskowski, 3/07Olathe, KS 1157 (3.0) $34^2 + 1$ Scott Dixon, 12/07Lenexa, KS 1160 (3.6) $\dfrac{3! \times 2 - .4}{1\%}$ Steve Wilson, 8/23Lawrence, KS 1164 (2.8) $\dfrac{4 - .12}{.\overline{3}\%}$ Steve Wilson, 7/13Lawrence, KS 1165 (3.6) $\dfrac{4! - 1 + .3}{2\%}$ Steve Wilson, 8/23Lawrence, KS 1168 (2.8) $\dfrac{4 - .1}{.\overline{3}\%} - 2$ Steve Wilson, 7/13Lawrence, KS 1169 (2.8) $\dfrac{3 - .4}{.\overline{2}\%} - 1$ Steve Wilson, 7/13Lawrence, KS 1170 (2.8) $\dfrac{3 - .4}{.\overline{2}\%} \times 1$ Steve Wilson, 7/13Lawrence, KS 1171 (2.8) $\dfrac{3 - .4}{.\overline{2}\%} + 1$ Steve Wilson, 7/13Lawrence, KS 1172 (2.8) $\dfrac{4 - .1}{.\overline{3}\%} + 2$ Steve Wilson, 7/13Lawrence, KS 1173 (3.8) $\dfrac{4!}{2\%} - \dfrac{3}{.\overline{1}}$ Steve Wilson, 8/23Lawrence, KS 1174 (3.6) $\sqrt[.1]{2} - \dfrac{3}{(\sqrt{4})\%}$ Steve Wilson, 8/23Lawrence, KS 1175 (2.4) $\dfrac{ \dfrac{1}{2\%} - 3}{4\%}$ Steve Wilson, 8/23Lawrence, KS 1176 (2.8) $(1 - 2\%) \times \dfrac{4}{.\overline{3}\%}$ Steve Wilson, 8/23Lawrence, KS 1177 (3.8) $\dfrac{4}{\left(\sqrt{.\overline{1}}\right)\%} - 23$ Steve Wilson, 8/23Lawrence, KS 1179 (2.6) $\dfrac{4}{.\overline{3}\%} - 21$ Steve Wilson, 8/23Lawrence, KS 1180 (2.4) $\dfrac{4 \times 3 - .2}{1\%}$ Steve Wilson, 8/23Lawrence, KS 1182 (2.6) $\dfrac{ \dfrac{4}{3\%} - 2}{.\overline{1}}$ Steve Wilson, 8/23Lawrence, KS 1184 (3.6) $\dfrac{4! - .3}{2\%} - 1$ Steve Wilson, 8/23Lawrence, KS 1185 (2.8) $\dfrac{4 - \dfrac{.1}{2}}{.\overline{3}\%}$ Steve Wilson, 8/23Lawrence, KS 1186 (3.6) $\dfrac{4! - .3}{2\%} + 1$ Steve Wilson, 8/23Lawrence, KS 1187 (3.4) $\dfrac{4!}{2\%} - 13$ Steve Wilson, 8/23Lawrence, KS 1188 (2.6) $\dfrac{4}{.\overline{3}\%} - 12$ Steve Wilson, 8/23Lawrence, KS 1189 (3.8) $\dfrac{4! - .1}{2\%} - 3!$ Steve Wilson, 8/23Lawrence, KS 1190 (3.8) $\dfrac{4! - .3 + .1}{2\%}$ Steve Wilson, 8/23Lawrence, KS 1191 (2.8) $\dfrac{4 - (2 + 1)\%}{.\overline{3}\%}$ Steve Wilson, 8/23Lawrence, KS 1192 (2.2) $4 \times \left( \dfrac{3}{1\%} - 2 \right)$ Steve Wilson, 8/23Lawrence, KS 1193 (2.8) $\dfrac{4 - 2\%}{.\overline{3}\%} - 1$ Steve Wilson, 8/23Lawrence, KS 1194 (2.2) $3 \times \left( \dfrac{4}{1\%} - 2 \right)$ Steve Wilson, 8/23Lawrence, KS 1195 (2.8) $\dfrac{4 - 2\%}{.\overline{3}\%} + 1$ Steve Wilson, 8/23Lawrence, KS 1196 (3.4) $\dfrac{3! \times 2}{1\%} - 4$ Steve Wilson, 8/23Lawrence, KS 1197 (2.6) $\dfrac{4}{.\overline{3}\%} - 2 - 1$ Steve Wilson, 8/23Lawrence, KS 1198 (2.2) $\dfrac{4 \times 3}{1\%} - 2$ Steve Wilson, 8/23Lawrence, KS 1199 (2.6) $\dfrac{4}{.\overline{3}\%} - 2 + 1$ Steve Wilson, 8/23Lawrence, KS 1200 (2.2) $\dfrac{12}{(4 - 3)\%}$ Steve Wilson, 8/23Lawrence, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601+)