$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\arcsec} {arcsec}$

## Integermania!

#### First Four Nonsquares

The first four nonsquare numbers are 2, 3, 5, and 6. Create each of the positive integers using one copy of each number, and any standard operations.  All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

A computer analysis by Paolo Pellegrini, who proposed this problem, shows that if a set contains 4 digits between 1 and 9, then the largest possible level 2.8 exquisiteness is achieved by the first four nonsquares.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).

 801 (5.0) $\dfrac{3! - 2}{5\pmf} + \cos(6!^\circ)$ Steve Wilson, 7/23Lawrence, KS 802 (2.8) $\dfrac{5.\overline{3}}{.\overline{6}\%} + 2$ Steve Wilson, 7/23Lawrence, KS 803 (2.4) $\dfrac{6 - 2}{.5\%} + 3$ Steve Wilson, 7/23Lawrence, KS 804 (3.6) $(3!)! + 5! - 6^2$ Steve Wilson, 7/23Lawrence, KS 805 (2.8) $\dfrac{2.\overline{6}}{.\overline{3}\%} + 5$ Steve Wilson, 7/23Lawrence, KS 806 (2.6) $\dfrac{2}{(.3 - 5\%)\%} + 6$ Steve Wilson, 7/23Lawrence, KS 807 (2.8) $\left( \dfrac{3}{.\overline{2}\%} - 5 \right) \times .6$ Steve Wilson, 7/23Lawrence, KS 808 (3.4) $6! + 5! - 32$ Steve Wilson, 7/23Lawrence, KS 809 (4.8) $\dfrac{2}{\ln\sqrt{\exp(5\pm)}} + 6 + 3$ Steve Wilson, 7/23Lawrence, KS 810 (2.4) $36 \times \dfrac{5}{.\overline{2}}$ Steve Wilson, 7/23Lawrence, KS 813 (2.8) $\left( \dfrac{3}{.\overline{2}\%} + 5 \right) \times .6$ Steve Wilson, 7/23Lawrence, KS 814 (3.6) $(3!)! + 5! - 26$ Steve Wilson, 7/23Lawrence, KS 815 (2.8) $\dfrac{6 \times .3}{.\overline{2}\%} + 5$ Steve Wilson, 7/23Lawrence, KS 816 (3.8) $5! \times (3! + .6 + .2)$ Steve Wilson, 7/23Lawrence, KS 817 (3.4) $6! + 5! - 23$ Steve Wilson, 7/23Lawrence, KS 820 (3.4) $6! + \dfrac{3 + 2}{5\%}$ Steve Wilson, 7/23Lawrence, KS 824 (2.8) $\dfrac{2 + 6\%}{(.3 - 5\%)\%}$ Steve Wilson, 7/23Lawrence, KS 825 (2.4) $(6 - .5) \times \dfrac{3}{2\%}$ Steve Wilson, 7/23Lawrence, KS 826 (3.2) $6! + 53 \times 2$ Steve Wilson, 7/23Lawrence, KS 827 (2.6) $\dfrac{5 - 2\%}{.6\%} - 3$ Steve Wilson, 7/23Lawrence, KS 828 (2.6) $\dfrac{5 - 3.2\%}{.6\%}$ Steve Wilson, 7/23Lawrence, KS 830 (2.8) $\left( \dfrac{3}{.2\%} - 6 \right) \times .\overline{5}$ Steve Wilson, 7/23Lawrence, KS 831 (2.6) $\dfrac{5}{.6\%} - 2.\overline{3}$ Steve Wilson, 7/23Lawrence, KS 832 (3.4) $6! + 5! - 2^3$ Steve Wilson, 7/23Lawrence, KS 833 (2.6) $\dfrac{5 - 2\%}{.6\%} + 3$ Steve Wilson, 7/23Lawrence, KS 834 (2.4) $\dfrac{5}{.6\%} + \dfrac23$ Steve Wilson, 7/23Lawrence, KS 835 (2.6) $\dfrac{5 + (3 - 2)\%}{.6\%}$ Steve Wilson, 7/23Lawrence, KS 836 (2.8) $\dfrac{5 - .2\%}{.6\%} + 3$ Steve Wilson, 7/23Lawrence, KS 837 (3.6) $6! + 5! - \sqrt{3^2}$ Steve Wilson, 7/23Lawrence, KS 838 (2.8) $\dfrac{5 + (3 - .2)\%}{.6\%}$ Steve Wilson, 7/23Lawrence, KS 839 (3.4) $6! + 5! - 3 + 2$ Steve Wilson, 7/23Lawrence, KS 840 (2.2) $56 \times \dfrac{3}{.2}$ Rachel Winkler, 9/12Shawnee, KS 841 (3.4) $6! + 5! + 3 - 2$ Steve Wilson, 7/23Lawrence, KS 842 (3.6) $((6 - 3)!)! + 5! + 2$ Steve Wilson, 7/23Lawrence, KS 843 (3.6) $6! + 5! + \sqrt{3^2}$ Steve Wilson, 7/23Lawrence, KS 844 (3.6) $6! + 5! + 3! - 2$ Steve Wilson, 7/23Lawrence, KS 845 (3.4) $6! + 5! + 3 + 2$ Steve Wilson, 7/23Lawrence, KS 846 (3.4) $6! + 5! + 3 \times 2$ Steve Wilson, 7/23Lawrence, KS 847 (3.2) $3^6 + 5! - 2$ Steve Wilson, 7/23Lawrence, KS 848 (3.4) $6! + 5! + 2^3$ Steve Wilson, 7/23Lawrence, KS 849 (3.4) $6! + 5! + 3^2$ Steve Wilson, 7/23Lawrence, KS 850 (2.2) $\dfrac{53 - 2}{6\%}$ Steve Wilson, 7/23Lawrence, KS 851 (3.2) $3^6 + 5! + 2$ Steve Wilson, 7/23Lawrence, KS 852 (3.6) $6! + 5! + 3! \times 2$ Steve Wilson, 7/23Lawrence, KS 855 (3.6) $6! + 5! + \dfrac{3}{.2}$ Steve Wilson, 7/23Lawrence, KS 860 (2.4) $\dfrac{6.3 - 2}{.5\%}$ Steve Wilson, 7/23Lawrence, KS 863 (3.4) $6! + 5! + 23$ Steve Wilson, 7/23Lawrence, KS 864 (2.8) $(3 - .6) \times \dfrac{2}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 865 (2.4) $\dfrac{26 - 5\%}{3\%}$ Steve Wilson, 7/23Lawrence, KS 866 (3.6) $(3!)! + 5! + 26$ Steve Wilson, 7/23Lawrence, KS 867 (2.6) $\dfrac{52}{6\%} + .\overline{3}$ Steve Wilson, 7/23Lawrence, KS 870 (2.2) $6 \times \left( \dfrac{3}{2\%} - 5 \right)$ Steve Wilson, 7/23Lawrence, KS 872 (3.4) $6! + 5! + 32$ Steve Wilson, 7/23Lawrence, KS 873 (2.8) $\dfrac{5 - 3 - 6\%}{.\overline{2}\%}$ Steve Wilson, 7/23Lawrence, KS 875 (2.2) $\dfrac{35}{(6 - 2)\%}$ Steve Wilson, 7/23Lawrence, KS 876 (3.2) $6! + 52 \times 3$ Steve Wilson, 7/23Lawrence, KS 880 (2.4) $\dfrac{53 - .2}{6\%}$ Steve Wilson, 7/23Lawrence, KS 882 (2.8) $\dfrac{5 - 2 - 6\%}{.\overline{3}\%}$ Steve Wilson, 7/23Lawrence, KS 883 (2.4) $\dfrac{53 - 2\%}{6\%}$ Steve Wilson, 7/23Lawrence, KS 885 (2.2) $3 \times \left( \dfrac{6}{2\%} - 5 \right)$ Steve Wilson, 7/23Lawrence, KS 888 (2.8) $6 \times \left( \dfrac{.5}{.\overline{3}\%} - 2 \right)$ Steve Wilson, 7/23Lawrence, KS 890 (2.6) $2 \times \left( \dfrac{3}{.\overline{6}\%} - 5 \right)$ Steve Wilson, 7/23Lawrence, KS 894 (2.6) $\dfrac{3 + 2}{.\overline{5}\%} - 6$ Steve Wilson, 7/23Lawrence, KS 895 (2.2) $\dfrac{6 \times 3}{2\%} - 5$ Steve Wilson, 7/23Lawrence, KS 896 (2.6) $\dfrac{ \dfrac{3}{.\overline{6}\%} - 2}{.5}$ Steve Wilson, 7/23Lawrence, KS 897 (2.4) $6 \times \left( \dfrac{3}{2\%} - .5 \right)$ Steve Wilson, 7/23Lawrence, KS 898 (2.8) $\dfrac{3}{.5\% \times .\overline{6}} - 2$ Steve Wilson, 7/23Lawrence, KS 899 (2.8) $2 \times \left( \dfrac{3}{.\overline{6}\%} - .5 \right)$ Steve Wilson, 7/23Lawrence, KS 900 (2.0) $36 \times 25$ Steve Wilson, 7/23Lawrence, KS 901 (2.8) $2 \times \left( \dfrac{3}{.\overline{6}\%} + .5 \right)$ Steve Wilson, 7/23Lawrence, KS 902 (2.8) $\dfrac{3}{.5\% \times .\overline{6}} + 2$ Steve Wilson, 7/23Lawrence, KS 903 (2.4) $6 \times \left( \dfrac{3}{2\%} + .5 \right)$ Steve Wilson, 7/23Lawrence, KS 904 (2.6) $\dfrac{ \dfrac{3}{.\overline{6}\%} + 2}{.5}$ Steve Wilson, 7/23Lawrence, KS 905 (2.2) $\dfrac{6 \times 3}{2\%} + 5$ Steve Wilson, 7/23Lawrence, KS 906 (2.6) $\dfrac{3 + 2}{.\overline{5}\%} + 6$ Steve Wilson, 7/23Lawrence, KS 910 (2.0) $35 \times 26$ Billie Jean Vazquez, 3/12Lenexa, KS 912 (2.8) $6 \times \left( \dfrac{.5}{.\overline{3}\%} + 2 \right)$ Steve Wilson, 7/23Lawrence, KS 915 (2.2) $3 \times \left( \dfrac{6}{2\%} + 5 \right)$ Steve Wilson, 7/23Lawrence, KS 918 (2.8) $\dfrac{5 - 2 + 6\%}{.\overline{3}\%}$ Steve Wilson, 7/23Lawrence, KS 920 (3.6) $6! + \dfrac{3}{(2 - .5)\%}$ Steve Wilson, 7/23Lawrence, KS 924 (3.4) $5! \times (6 + 2 - .3)$ Steve Wilson, 7/23Lawrence, KS 925 (2.4) $\dfrac{6 \times 3 + .5}{2\%}$ Steve Wilson, 7/23Lawrence, KS 927 (2.8) $\dfrac{5 - 3 + 6\%}{.\overline{2}\%}$ Steve Wilson, 7/23Lawrence, KS 930 (2.0) $3 \times 5 \times 62$ Elizabeth Waters, 6/12Lawrence, KS 936 (2.0) $52 \times 6 \times 3$ Ryan McNeese, 7/12Lawrence, KS 940 (3.6) $\dfrac{3!}{6\pmf} - \dfrac{5!}{2}$ Steve Wilson, 7/23Lawrence, KS 945 (2.4) $35 \times \dfrac{6}{.\overline{2}}$ Steve Wilson, 7/23Lawrence, KS 948 (3.4) $\dfrac{3!}{6\pmf} - 52$ Steve Wilson, 7/23Lawrence, KS 950 (2.6) $\dfrac{ \dfrac{5}{.\overline{2}} + 6}{3\%}$ Steve Wilson, 7/23Lawrence, KS 954 (3.4) $6! + 2 \times (5! - 3)$ Steve Wilson, 7/23Lawrence, KS 955 (3.2) $6! + 235$ Nick Evans, 6/12Lawrence, KS 957 (3.2) $5! \times (6 + 2) - 3$ Steve Wilson, 7/23Lawrence, KS 960 (2.0) $32 \times 6 \times 5$ Steve Wilson, 7/23Lawrence, KS 963 (3.2) $5! \times (6 + 2) + 3$ Steve Wilson, 7/23Lawrence, KS 966 (3.4) $6! + 2 \times (5! + 3)$ Steve Wilson, 7/23Lawrence, KS 970 (2.6) $\dfrac{5 - 3 - 6\%}{.2\%}$ Steve Wilson, 7/23Lawrence, KS 972 (2.8) $\dfrac{3 \times 2 - .6}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 973 (3.2) $6! + 253$ Steve Wilson, 7/23Lawrence, KS 975 (2.2) $\dfrac{65}{.2} \times 3$ Hee Do Yoon, 2/12Overland Park, KS 980 (2.6) $\dfrac{5 - 2 - 6\%}{.3\%}$ Steve Wilson, 7/23Lawrence, KS 984 (3.2) $\dfrac{6 - .\overline{3} - .2}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 985 (2.4) $3 \times \left( \dfrac{2}{.6\%} - 5 \right)$ Steve Wilson, 7/23Lawrence, KS 986 (3.2) $\dfrac{6 - .3 - .\overline{2}}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 988 (2.2) $6 \times \left( \dfrac{5}{3\%} - 2 \right)$ Steve Wilson, 7/23Lawrence, KS 990 (2.2) $5 \times \left( \dfrac{6}{3\%} - 2 \right)$ Steve Wilson, 7/23Lawrence, KS 994 (2.4) $\dfrac{3 + 2}{.5\%} - 6$ Steve Wilson, 7/23Lawrence, KS 995 (2.4) $\dfrac{3 \times 2}{.6\%} - 5$ Steve Wilson, 7/23Lawrence, KS 996 (2.4) $(5 - 2\%) \times \dfrac{6}{3\%}$ Steve Wilson, 7/23Lawrence, KS 997 (2.8) $\dfrac{5 - 3 - .6\%}{.2\%}$ Steve Wilson, 7/23Lawrence, KS 998 (2.2) $\dfrac{6 \times 5}{3\%} - 2$ Steve Wilson, 7/23Lawrence, KS 999 (2.4) $5 \times \left( \dfrac{6}{3\%} - .2 \right)$ Steve Wilson, 7/23Lawrence, KS 1000 (2.4) $\dfrac{6 - 3 + 2}{.5\%}$ Steve Wilson, 7/23Lawrence, KS 1001 (2.4) $5 \times \left( \dfrac{6}{3\%} + .2 \right)$ Steve Wilson, 7/23Lawrence, KS 1002 (2.2) $\dfrac{6 \times 5}{3\%} + 2$ Steve Wilson, 7/23Lawrence, KS 1003 (2.8) $\dfrac{5 - 3 + .6\%}{.2\%}$ Steve Wilson, 7/23Lawrence, KS 1004 (2.4) $(5 + 2\%) \times \dfrac{6}{3\%}$ Steve Wilson, 7/23Lawrence, KS 1005 (2.4) $\dfrac{3 \times 2}{.6\%} + 5$ Steve Wilson, 7/23Lawrence, KS 1006 (2.4) $\dfrac{3 + 2}{.5\%} + 6$ Steve Wilson, 7/23Lawrence, KS 1008 (2.6) $\dfrac{3.6 + 2}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 1010 (2.2) $5 \times \left( \dfrac{6}{3\%} + 2 \right)$ Steve Wilson, 7/23Lawrence, KS 1012 (2.2) $6 \times \left( \dfrac{5}{3\%} + 2 \right)$ Steve Wilson, 7/23Lawrence, KS 1015 (2.2) $3 \times \left( \dfrac{2}{.6\%} + 5 \right)$ Steve Wilson, 7/23Lawrence, KS 1016 (3.8) $\dfrac{6}{.\overline{5}\%} - 2^{3!}$ Steve Wilson, 7/23Lawrence, KS 1018 (3.8) $\dfrac{3!}{.\overline{5}\%} - 62$ Steve Wilson, 7/23Lawrence, KS 1020 (2.6) $\dfrac{5 - 2 + 6\%}{.3\%}$ Steve Wilson, 7/23Lawrence, KS 1024 (2.8) $\dfrac{6 - .3}{.\overline{5}\%} - 2$ Steve Wilson, 7/23Lawrence, KS 1025 (2.4) $\dfrac{ \dfrac{6}{3\%} + 5}{.2}$ Steve Wilson, 7/23Lawrence, KS 1028 (2.8) $\dfrac{6 - .3}{.\overline{5}\%} + 2$ Steve Wilson, 7/23Lawrence, KS 1030 (2.6) $\dfrac{5 - 3 + 6\%}{.2\%}$ Steve Wilson, 7/23Lawrence, KS 1032 (3.4) $5! \times (3! + 2.6)$ Steve Wilson, 7/23Lawrence, KS 1040 (2.2) $5.2 \times \dfrac{6}{3\%}$ Steve Wilson, 7/23Lawrence, KS 1041 (2.8) $\dfrac{6 - .2}{.\overline{5}\%} - 3$ Steve Wilson, 7/23Lawrence, KS 1044 (3.8) $\dfrac{5 + 2}{.\overline{6}\%} - 3!$ Steve Wilson, 7/23Lawrence, KS 1047 (2.6) $\dfrac{5 + 2}{.\overline{6}\%} - 3$ Steve Wilson, 7/23Lawrence, KS 1048 (2.6) $\dfrac{6}{.\overline{5}\%} - 32$ Steve Wilson, 7/23Lawrence, KS 1050 (2.2) $3.5 \times \dfrac{6}{2\%}$ Steve Wilson, 7/23Lawrence, KS 1053 (2.6) $\dfrac{5 + 2}{.\overline{6}\%} + 3$ Steve Wilson, 7/23Lawrence, KS 1054 (3.8) $\dfrac{3!}{.\overline{5}\%} - 26$ Steve Wilson, 7/23Lawrence, KS 1055 (3.2) $\dfrac{6^3 - 5}{.2}$ Steve Wilson, 7/23Lawrence, KS 1056 (3.0) $\dfrac{6.2 - .\overline{3}}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 1057 (2.6) $\dfrac{6}{.\overline{5}\%} - 23$ Steve Wilson, 7/23Lawrence, KS 1060 (3.2) $\dfrac{6.\overline{2} - .\overline{3}}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 1062 (2.6) $3 \times \left( \dfrac{2}{.\overline{5}\%} - 6 \right)$ Steve Wilson, 7/23Lawrence, KS 1065 (2.8) $\dfrac{6}{.\overline{5}\%} - \dfrac{3}{.2}$ Steve Wilson, 7/23Lawrence, KS 1066 (3.0) $\dfrac{6.\overline{2} - .3}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 1068 (2.6) $2 \times \left( \dfrac{3}{.\overline{5}\%} - 6 \right)$ Steve Wilson, 7/23Lawrence, KS 1070 (3.0) $5 \times (6^3 - 2)$ Steve Wilson, 7/23Lawrence, KS 1071 (2.8) $\dfrac{6 - (3 + 2)\%}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 1072 (2.0) $2 \times 536$ Michael Fung, 1/12Overland Park, KS 1074 (2.6) $\dfrac{3 \times 2}{.\overline{5}\%} - 6$ Steve Wilson, 7/23Lawrence, KS 1075 (2.6) $\dfrac{6}{.\overline{5}\%} - 3 - 2$ Steve Wilson, 7/23Lawrence, KS 1076 (3.8) $\dfrac{6}{.\overline{5}\%} - 3! + 2$ Steve Wilson, 7/23Lawrence, KS 1077 (3.8) $\dfrac{6}{.\overline{5}\%} - \sqrt{3^2}$ Steve Wilson, 7/23Lawrence, KS 1078 (3.0) $6^3 \times 5 - 2$ Rachel Winkler, 9/12Shawnee, KS 1079 (2.6) $\dfrac{6}{.\overline{5}\%} - 3 + 2$ Steve Wilson, 7/23Lawrence, KS 1080 (2.6) $\dfrac{3 \times 2 - .6}{.5\%}$ Steve Wilson, 7/23Lawrence, KS 1081 (2.6) $\dfrac{6}{.\overline{5}\%} + 3 - 2$ Steve Wilson, 7/23Lawrence, KS 1082 (3.0) $6^3 \times 5 + 2$ Nathan Moore, 9/11Overland Park, KS 1083 (3.8) $\dfrac{6}{.\overline{5}\%} + \sqrt{3^2}$ Steve Wilson, 7/23Lawrence, KS 1084 (3.8) $\dfrac{6}{.\overline{5}\%} + 3! - 2$ Steve Wilson, 7/23Lawrence, KS 1085 (2.6) $\dfrac{6}{.\overline{5}\%} + 3 + 2$ Steve Wilson, 7/23Lawrence, KS 1086 (2.6) $\dfrac{6}{.\overline{5}\%} + 3 \times 2$ Steve Wilson, 7/23Lawrence, KS 1088 (3.6) $\dfrac{6}{.\overline{5}\%} + 2^3$ Steve Wilson, 7/23Lawrence, KS 1089 (2.8) $\dfrac{6 + (3 + 2)\%}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 1090 (3.0) $5 \times (6^3 + 2)$ Steve Wilson, 7/23Lawrence, KS 1092 (2.6) $2 \times \left( \dfrac{3}{.\overline{5}\%} + 6 \right)$ Steve Wilson, 7/23Lawrence, KS 1094 (3.0) $\dfrac{6.3 - .\overline{2}}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 1095 (2.6) $\dfrac{5 + 2.3}{.\overline{6}\%}$ Steve Wilson, 7/23Lawrence, KS 1098 (2.6) $3 \times \left( \dfrac{2}{.\overline{5}\%} + 6 \right)$ Steve Wilson, 7/23Lawrence, KS 1100 (2.2) $\dfrac{6 + 5}{(3 - 2)\%}$ Steve Wilson, 7/23Lawrence, KS 1104 (3.0) $\dfrac{6.\overline{3} - .2}{.\overline{5}\%}$ Steve Wilson, 7/23Lawrence, KS 1105 (3.2) $\dfrac{6^3 + 5}{.2}$ Steve Wilson, 7/23Lawrence, KS 1106 (3.8) $\dfrac{3!}{.\overline{5}\%} + 26$ Steve Wilson, 7/23Lawrence, KS 1116 (3.8) $\dfrac{3!}{.\overline{5}\%} + 6^2$ Steve Wilson, 7/23Lawrence, KS 1126 (2.0) $563 \times 2$ Billie Jean Vazquez, 4/12Lenexa, KS 1152 (3.2) $2^3 \times \dfrac{6!}{5}$ Samantha Maupin, 6/12Lawrence, KS 1180 (2.0) $236 \times 5$ Billie Jean Vazquez, 5/12Lenexa, KS 1200 (3.4) $\dfrac{6!}{3!} \times 5 \times 2$ Robert Devine, 4/12Lawrence, KS 1219 (3.0) $35^2 - 6$ Ryan McNeese, 7/12Lawrence, KS 1231 (3.0) $35^2 + 6$ Hee Do Yoon, 2/12Overland Park, KS 1234 (3.4) $\dfrac{62}{5\%} - 3!$ Lawrence Ombasa, 3/16Overland Park, KS 1237 (2.2) $\dfrac{62}{5\%} - 3$ Paolo Noya, 12/13Bergamo, Italy 1243 (2.2) $\dfrac{62}{5\%} + 3$ Paolo Noya, 12/13Bergamo, Italy 1246 (2.2) $\dfrac{623}{.5}$ Meredith Rosenbaum, 11/11Shawnee, KS 1260 (3.0) $6^2 \times 35$ Meredith Rosenbaum, 11/11Shawnee, KS 1270 (2.0) $635 \times 2$ Alyssa Trembly, 3/14Spring Hill, KS 1288 (2.0) $23 \times 56$ William Lupton, 7/11Olathe, KS 1291 (3.0) $36^2 - 5$ Ryan McNeese, 7/12Lawrence, KS 1296 (3.0) $\dfrac{6^5}{3 \times 2}$ Elizabeth Waters, 6/12Lawrence, KS 1301 (3.0) $36^2 + 5$ Hee Do Yoon, 2/12Overland Park, KS 1306 (2.0) $653 \times 2$ Billie Jean Vazquez, 3/12Lenexa, KS 1378 (2.0) $26 \times 53$ Sara Stites, 7/12Lawrence, KS 1410 (2.0) $235 \times 6$ Billie Jean Vazquez, 3/12Lenexa, KS 1440 (2.2) $36 \times \dfrac{2}{5\%}$ Mary A. M., 8/12Overland Park, KS 1443 (3.2) $5! \times 6 \times 2 + 3$ Steve Wilson, 7/23Lawrence, KS 1460 (3.0) $3^5 \times 6 + 2$ Li-Yu Chen, 7/12Lawrence, KS 1463 (3.0) $2 \times 3^6 + 5$ Dominic Clemente, 6/12Lawrence, KS 1475 (3.2) $6! \times 2 + 35$ Rachel Winkler, 9/12Shawnee, KS 1493 (3.2) $6! \times 2 + 53$ Yue Li, 6/12Lawrence, KS 1495 (2.0) $65 \times 23$ Sam Carroll, 12/11Shawnee, KS 1500 (3.0) $5^3 \times 6 \times 2$ Sam Carroll, 12/11Shawnee, KS 1560 (2.2) $26 \times \dfrac{3}{5\%}$ Mary A. M., 10/12Overland Park, KS 1575 (2.2) $63 \times \dfrac{5}{.2}$ Sam Carroll, 11/11Shawnee, KS 1578 (2.0) $526 \times 3$ Billie Jean Vazquez, 5/12Lenexa, KS 1590 (2.2) $53 \times \dfrac{6}{.2}$ Sam Carroll, 11/11Shawnee, KS 1620 (3.4) $\sqrt{3^6} \times \dfrac{5!}{2}$ Aaron Parsons, 5/13Salisbury, MD 1630 (2.0) $326 \times 5$ Rachel Winkler, 9/12Shawnee, KS 1680 (3.4) $\dfrac{6^3 + 5!}{.2}$ Josh Hood, 6/12Olathe, KS 1686 (2.0) $562 \times 3$ Nick Evans, 6/12Lawrence, KS 1692 (3.6) $2 \times (6! + 5! + 3!)$ Wei Zhang, 7/12Lawrence, KS 1728 (3.4) $6! \times 3! \times \dfrac25$ Robert Devine, 5/12Lawrence, KS 1780 (2.2) $\dfrac{356}{.2}$ Kellen Horsfall, 6/12Lawrence, KS 1792 (2.0) $32 \times 56$ Allison Layne-Mulhern, 11/13Leawood, KS 1810 (2.0) $362 \times 5$ Ryan McNeese, 7/12Lawrence, KS 1872 (2.0) $36 \times 52$ Sara Stites, 7/12Lawrence, KS 1875 (2.0) $625 \times 3$ Nick Evans, 6/12Lawrence, KS 1908 (3.0) $6^2 \times 53$ Sam Carroll, 11/11Shawnee, KS 1950 (2.0) $325 \times 6$ Deborah Kangas, 3/14Lenexa, KS 1956 (2.0) $652 \times 3$ Billie Jean Vazquez, 2/12Lenexa, KS 2016 (3.2) $3!^2 \times 56$ Sara Stites, 7/12Lawrence, KS 2080 (2.0) $32 \times 65$ Sam Carroll, 12/11Shawnee, KS 2112 (2.0) $352 \times 6$ Billie Jean Vazquez, 4/12Lenexa, KS 2160 (3.2) $\dfrac{6^3}{5 \times 2\%}$ Steve Wilson, 7/22Lawrence, KS 2185 (3.2) $6! \times 3 + 25$ Yue Li, 6/12Lawrence, KS 2212 (3.2) $6! \times 3 + 52$ Yue Li, 6/12Lawrence, KS 2304 (3.0) $((5 + 3) \times 6)^2$ Roxanne Russell, 12/12Merriam, KS 2356 (2.0) $2356$ Paolo Noya, 4/13Bergamo, Italy 2397 (3.2) $\dfrac{5!^2}{6} - 3$ Shannon O'Neill, 6/12Lawrence, KS 2400 (3.4) $\dfrac{(2 \times 3)!}{5 \times 6\%}$ Javier Vizcarra, 7/12Lawrence, KS 2520 (2.2) $63 \times \dfrac{2}{5\%}$ Mary A. M., 9/12Overland Park, KS 2560 (3.0) $2^{6+3} \times 5$ Josh Hood, 6/12Olathe, KS 2592 (3.2) $\dfrac{6^{\sqrt{25}}}{3}$ Eamon Devine, 6/12Lawrence, KS 2700 (3.0) $(5 \times 6)^2 \times 3$ Roxanne Russell, 12/12Merriam, KS 2760 (2.2) $23 \times \dfrac{6}{5\%}$ Mary A. M., 9/12Overland Park, KS 2803 (3.0) $53^2 - 6$ Leif Muhammad, 2/14Kansas City, MO 2815 (3.0) $53^2 + 6$ Hengshen Lu, 11/12Lawrence, KS 2880 (3.2) $2^{5-3} \times 6!$ Shannon O'Neill, 6/12Lawrence, KS 2916 (3.0) $3^5 \times 6 \times 2$ Josh Hood, 6/12Olathe, KS 3115 (2.0) $623 \times 5$ Allison Layne-Mulhern, 12/13Leawood, KS 3138 (2.0) $523 \times 6$ Billie Jean Vazquez, 4/12Lenexa, KS 3139 (3.0) $56^2 + 3$ Elizabeth Waters, 6/12Lawrence, KS 3160 (2.0) $632 \times 5$ Billie Jean Vazquez, 3/12Lenexa, KS 3175 (2.2) $\dfrac{635}{.2}$ Deborah Kangas, 3/14Lenexa, KS 3192 (2.0) $532 \times 6$ Billie Jean Vazquez, 4/12Lenexa, KS 3250 (3.0) $5^3 \times 26$ Alondra Aviles Gallegos, 4/17Kansas City, KS 3265 (2.0) $3265$ Steve Wilson, 7/22Lawrence, KS 3276 (2.0) $52 \times 63$ Eamon Devine, 6/12Lawrence, KS 3286 (2.0) $62 \times 53$ Billie Jean Vazquez, 3/12Lenexa, KS 3360 (3.2) $\dfrac{(5 + 3)!}{6 \times 2}$ Paolo Noya, 4/13Bergamo, Italy 3392 (3.0) $53 \times 2^6$ Jordan Crawford, 8/11Overland Park, KS 3480 (3.4) $5! \times 23 + 6!$ Hyun Cheong, 4/14Overland Park, KS 3562 (2.0) $3562$ Steve Wilson, 7/22Lawrence, KS 3594 (3.2) $(3 \times 2)! \times 5 - 6$ Wei Zhang, 7/12Lawrence, KS 3623 (3.2) $6! \times 5 + 23$ Yue Li, 6/12Lawrence, KS 3632 (3.2) $6! \times 5 + 32$ Yue Li, 6/12Lawrence, KS 3720 (2.2) $62 \times \dfrac{3}{5\%}$ Mary A. M., 10/12Overland Park, KS 3750 (3.2) $5^3 \times \dfrac{6}{.2}$ Robert Devine, 5/12Lawrence, KS 3840 (2.2) $32 \times \dfrac{6}{5\%}$ Mary A. M., 9/12Overland Park, KS 4228 (3.0) $65^2 + 3$ Elizabeth Waters, 6/12Lawrence, KS 4320 (3.2) $5! \times 2 \times 3 \times 6$ Hengshen Lu, 11/12Lawrence, KS 4323 (3.2) $5! \times 6^2 + 3$ Ryan McNeese, 7/12Lawrence, KS 4500 (3.0) $5^3 \times 6^2$ Nathan Moore, 9/11Overland Park, KS 4800 (3.4) $5! \times 2 \times \dfrac{6}{.3}$ Robert Devine, 5/12Lawrence, KS 5184 (3.0) $6^5 \times \dfrac23$ Samantha Maupin, 6/12Lawrence, KS 5326 (2.0) $5326$ Steve Wilson, 7/22Lawrence, KS 5400 (3.0) $5^2 \times 6^3$ Nathan Moore, 9/11Overland Park, KS 6532 (2.0) $6532$ Steve Wilson, 7/22Lawrence, KS 7290 (3.0) $3^6 \times 2 \times 5$ Joseph Geraci, 10/11Leawood, KS 7350 (3.0) $35^2 \times 6$ Kellen Horsfall, 6/12Lawrence, KS 7437 (3.2) $5! \times 62 - 3$ Ron Doherty, 6/12Lawrence, KS 7440 (3.4) $62 \times \dfrac{3!}{5\%}$ Larry Flanagan, 6/12Lawrence, KS 7680 (3.6) $\sqrt{ (6 - 2)^{3!}} \times 5!$ Larry Flanagan, 6/12Lawrence, KS 7744 (3.0) $6^5 - 32$ Alyssa Trembly, 3/14Spring Hill, KS 7767 (3.0) $6^5 - 3^2$ Zhedong Liu, 6/12Lawrence, KS 7771 (3.0) $6^5 - 3 - 2$ Nathan Moore, 11/11Overland Park, KS 7781 (3.0) $6^5 + 3 + 2$ Nathan Moore, 11/11Overland Park, KS 7785 (3.0) $6^5 + 3^2$ Elizabeth Waters, 7/12Lawrence, KS 7799 (3.0) $6^5 + 23$ Chris Harris, 6/12Overland Park, KS 7808 (3.0) $6^5 + 32$ Chris Harris, 6/12Overland Park, KS 7938 (3.2) $\dfrac{63^2}{.5}$ Nathan Moore, 12/11Overland Park, KS 8000 (3.2) $\sqrt{5^{3!}} \times 2^6$ Larry Flanagan, 7/12Lawrence, KS 8100 (3.0) $(3 \times 5 \times 6)^2$ Roxanne Russell, 12/12Merriam, KS 8400 (2.2) $56 \times \dfrac{3}{2\%}$ Mary A. M., 10/12Overland Park, KS 8748 (3.0) $3^5 \times 6^2$ Meredith Rosenbaum, 11/11Shawnee, KS 9000 (2.2) $36 \times \dfrac{5}{2\%}$ Mary A. M., 9/12Overland Park, KS 9408 (3.0) $56^2 \times 3$ Dominic Clemente, 6/12Lawrence, KS 9750 (2.2) $65 \times \dfrac{3}{2\%}$ Mary A. M., 10/12Overland Park, KS 10500 (2.2) $35 \times \dfrac{6}{2\%}$ Mary A. M., 10/12Overland Park, KS 10800 (3.4) $5! \times 3 \times \dfrac{6}{.2}$ Robert Devine, 5/12Lawrence, KS 11232 (3.0) $6^3 \times 52$ Chris Harris, 6/12Overland Park, KS 11664 (3.0) $6^5 \times \dfrac32$ Samantha Maupin, 6/12Lawrence, KS 12000 (2.4) $\dfrac{6}{5\%\%} \times (3 - 2)$ Steve Wilson, 7/22Lawrence, KS 12480 (3.2) $52 \times \dfrac{6!}{3}$ Shannon O'Neill, 6/12Lawrence, KS 12675 (3.0) $65^2 \times 3$ Nathan Moore, 12/11Overland Park, KS 13500 (3.0) $\dfrac{(5 \times 6)^3}{2}$ Roxanne Russell, 12/12Merriam, KS 13824 (3.2) $\left( \dfrac{6}{.5^2} \right)^3$ Eamon Devine, 6/12Lawrence, KS 15120 (3.2) $(5 + 2) \times 6! \times 3$ Wei Zhang, 7/12Lawrence, KS 15552 (3.0) $3^5 \times 2^6$ Joseph Geraci, 10/11Leawood, KS 15593 (3.0) $5^6 - 32$ Kellen Horsfall, 6/12Lawrence, KS 15620 (3.0) $5^6 - 3 - 2$ Nathan Moore, 11/11Overland Park, KS 15624 (3.0) $5^6 - 3 + 2$ Nathan Moore, 11/11Overland Park, KS 15626 (3.0) $5^6 + 3 - 2$ Sarah DuPont, 4/13Roeland Park, KS 15630 (3.0) $5^6 + 3 + 2$ Nathan Moore, 11/11Overland Park, KS 15633 (3.0) $5^6 + 2^3$ Ron Doherty, 6/12Lawrence, KS 15637 (3.2) $5^6 + 3! \times 2$ Wei Zhang, 6/12Lawrence, KS 15750 (2.2) $63 \times \dfrac{5}{2\%}$ Mary A. M., 9/12Overland Park, KS 16680 (3.4) $6! \times 23 + 5!$ Hyun Cheong, 4/14Overland Park, KS 17280 (3.6) $\dfrac{6! \times 3!}{.25}$ Luke Sauvadon, 7/12Lawrence, KS 17283 (3.6) $6! \times 5! \times .2 + 3$ Jason Cosentino, 7/12Lawrence, KS 19845 (3.0) $63^2 \times 5$ Nathan Moore, 12/11Overland Park, KS 23328 (3.0) $2^5 \times 3^6$ Joseph Geraci, 10/11Leawood, KS 25920 (3.4) $\dfrac{6^{3!-2}}{5\%}$ Larry Flanagan, 6/12Lawrence, KS 28800 (3.2) $6! \times 2^3 \times 5$ Samantha Maupin, 6/12Lawrence, KS 31750 (2.2) $\dfrac{635}{2\%}$ Deborah Kangas, 3/14Lenexa, KS 32774 (3.0) $2^{3 \times 5} + 6$ Dominic Clemente, 6/12Lawrence, KS 33643 (5.0) ${}_{23} C_5 - 6$ Naveen Jayan, 6/13Mangalore, India 37500 (3.6) $\sqrt{5^6} \times \dfrac{3!}{2\%}$ Junjie Mao, 6/12Lawrence, KS 38865 (3.2) $\dfrac{6^5 - 3}{.2}$ Yuncan Yang, 7/12Lawrence, KS 39120 (3.2) $5! \times 326$ Zhedong Liu, 7/12Lawrence, KS 41040 (3.6) $(5! - 3!) \times \dfrac{6!}{2}$ Miles Gill, 7/12Lawrence, KS 43200 (3.6) $\sqrt{3^2} \times \dfrac{6!}{5\%}$ Junjie Mao, 6/12Lawrence, KS 46631 (3.2) $6^{3!} - 5^2$ Larry Flanagan, 7/12Lawrence, KS 46656 (3.0) $6^5 \times 3 \times 2$ Joseph Geraci, 10/11Leawood, KS 46661 (3.0) $6^{2 \times 3} + 5$ Larry Flanagan, 7/12Lawrence, KS 46666 (3.2) $6^{3!} + 5 \times 2$ Josh Hood, 6/12Olathe, KS 47995 (3.4) $6! \times \dfrac{2}{3\%} - 5$ Samantha Maupin, 7/12Lawrence, KS 48000 (3.4) $\dfrac{5!}{3\%} \times 6 \times 2$ Yi Zheng, 4/16Olathe, KS 48005 (3.4) $6! \times \dfrac{2}{3\%} + 5$ Samantha Maupin, 7/12Lawrence, KS 54925 (3.2) $65^3 \times .2$ Alondra Aviles Gallegos, 4/17Kansas City, KS 86385 (3.6) $6! \times 5! - \dfrac{3}{.2}$ Jason Cosentino, 7/12Lawrence, KS 86394 (3.4) $6! \times 5! - 3 \times 2$ Miles Gill, 7/12Lawrence, KS 86412 (3.6) $6! \times 5! + 3! \times 2$ Wei Zhang, 7/12Lawrence, KS 87808 (3.0) $\dfrac{56^3}{2}$ Samantha Maupin, 6/12Lawrence, KS 89998 (3.2) $6! \times 5^3 - 2$ Shannon O'Neill, 7/12Lawrence, KS 93750 (3.0) $5^6 \times 3 \times 2$ Joseph Geraci, 10/11Leawood, KS 107995 (3.4) $6! \times \dfrac{3}{2\%} - 5$ Samantha Maupin, 7/12Lawrence, KS 108005 (3.4) $6! \times \dfrac{3}{2\%} + 5$ Samantha Maupin, 7/12Lawrence, KS 120000 (3.6) $\sqrt{5^2} \times \dfrac{6!}{3\%}$ Junjie Mao, 6/12Lawrence, KS 125000 (3.0) $2^3 \times 5^6$ William Lupton, 7/11Olathe, KS 126736 (3.0) $356^2$ Zhedong Liu, 7/12Lawrence, KS 129600 (3.4) $6! \times 5! \times \dfrac32$ Zhedong Liu, 7/12Lawrence, KS 133225 (3.0) $365^2$ Dominic Clemente, 7/12Lawrence, KS 134400 (3.4) $\dfrac{(2^3)!}{5 \times 6\%}$ Junjie Mao, 6/12Lawrence, KS 140625 (3.0) $3^2 \times 5^6$ William Lupton, 7/11Olathe, KS 144000 (3.6) $\dfrac{6! \times 5!}{3 \times .2}$ Jason Cosentino, 7/12Lawrence, KS 148877 (3.0) $\sqrt[2]{53^6}$ Nick Evans, 6/12Lawrence, KS 162000 (3.6) $\sqrt{3^6} \times \dfrac{5!}{2\%}$ Junjie Mao, 6/12Lawrence, KS 178848 (3.0) $6^5 \times 23$ Chris Harris, 6/12Overland Park, KS 180003 (3.4) $6! \times \dfrac{5}{2\%} + 3$ Samantha Maupin, 7/12Lawrence, KS 234000 (3.2) $6! \times 325$ Zhedong Liu, 7/12Lawrence, KS 248832 (3.0) $6^5 \times 32$ Chris Harris, 6/12Overland Park, KS 259200 (3.6) $6! \times 5! \times \dfrac{3!}{2}$ Miles Gill, 7/12Lawrence, KS 262149 (3.0) $2^{6 \times 3} + 5$ Deborah Kangas, 3/14Lenexa, KS 274627 (3.0) $65^3 + 2$ Sarah DuPont, 4/13Roeland Park, KS 349920 (3.2) $6! \times 3^5 \times 2$ Long Zhang, 6/12Lawrence, KS 351232 (3.0) $56^3 \times 2$ Dominic Clemente, 6/12Lawrence, KS 359375 (3.0) $23 \times 5^6$ Kashmira Sayani, 4/17Overland Park, KS 549250 (3.0) $65^3 \times 2$ Nathan Moore, 12/11Overland Park, KS 604800 (3.2) $\dfrac{(5 + 3 + 2)!}{6}$ Wei Zhang, 7/12Lawrence, KS 1036800 (3.6) $6! \times 5! \times 3! \times 2$ Miles Gill, 7/12Lawrence, KS 1191640 (3.0) $62^3 \times 5$ Nathan Moore, 12/11Overland Park, KS 1260000 (3.4) $\dfrac{6!}{2\%} \times 35$ Yi Zheng, 4/16Olathe, KS 1500625 (3.0) $35^{6-2}$ Larry Flanagan, 6/12Lawrence, KS 1908000 (3.4) $\dfrac{6!}{2\%} \times 53$ Yi Zheng, 4/16Olathe, KS 4037874 (5.0) ${}_{23} P_5 - 6$ Naveen Jayan, 6/13Mangalore, India 6436337 (3.0) $23^5 - 6$ Kashmira Sayani, 1/17Overland Park, KS 8550360 (5.4) ${}_{6 \times 5} P_{3!} \times 2\%$ Javier Vizcarra, 7/12Lawrence, KS 38618058 (3.0) $23^5 \times 6$ William Lupton, 7/11Olathe, KS 916132829 (3.0) $62^5 - 3$ Alyssa Trembly, 3/14Spring Hill, KS 916132835 (3.0) $62^5 + 3$ Alyssa Trembly, 3/14Spring Hill, KS 992436541 (3.0) $63^5 - 2$ Alyssa Trembly, 3/14Spring Hill, KS 1073741819 (3.0) $32^6 - 5$ Ben Kerkhoff, 7/12Lawrence, KS 1073714827 (3.0) $2^{6 \times 5} + 3$ Deborah Kangas, 3/14Lenexa, KS 5368709120 (3.0) $32^6 \times 5$ William Lupton, 7/11Olathe, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).