$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\antilog}{antilog} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\arcsch}{arcsch}$

## Integermania!

#### Four Fours

Four fours is a classic problem, dating back at least 90 years. Create each of the positive integers using four copies of 4, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here!  This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

 2001 (2.8) $\dfrac{4 + 4 + .4\%}{.4\%}$ Steve Wilson, 9/23Lawrence, KS 2002 (3.4) $\dfrac{4 + 4}{4\pmf} + \sqrt{4}$ Steve Wilson, 9/23Lawrence, KS 2003 (3.8) $\dfrac{4 - (\sqrt{4})\pmf}{(\sqrt{4})\pmf} + 4$ Steve Wilson, 5/24Lawrence, KS 2004 (2.4) $\dfrac{4 + 4}{.4\%} + 4$ Steve Wilson, 9/23Lawrence, KS 2005 (3.8) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 9/23Lawrence, KS 2006 (3.6) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{4!}{4}$ Steve Wilson, 9/23Lawrence, KS 2007 (5.2) $\dfrac{4}{\left(\sqrt{4}\right)\pmf} + \cosh(\sqrt{4} \times \arcosh\sqrt{4})$ Steve Wilson, 5/24Lawrence, KS 2008 (3.4) $\dfrac{4}{(\sqrt{4})\pmf} + 4 + 4$ Steve Wilson, 9/23Lawrence, KS 2009 (3.8) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{4}{.\overline{4}}$ Steve Wilson, 9/23Lawrence, KS 2010 (2.6) $\dfrac{4 + 4 + 4\%}{.4\%}$ Steve Wilson, 9/23Lawrence, KS 2011 (4.0) $\dfrac{4 + (4! - \sqrt{4})\pmf}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2012 (3.8) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2013 (4.0) $\dfrac{4 + (4! + \sqrt{4})\pmf}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2014 (3.8) $\dfrac{4 + (\sqrt{4})\%}{(\sqrt{4})\pmf} + 4$ Steve Wilson, 5/24Lawrence, KS 2015 (4.2) $\dfrac{4 + \left(\sqrt{\dfrac{4}{.\overline{4}}}\right)\%}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2016 (3.4) $\dfrac{4}{(\sqrt{4})\pmf} + 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2017 (4.2) $\dfrac{(4 + 4)!\% + \sqrt{4\%}}{\sqrt{4\%}}$ Steve Wilson, 5/24Lawrence, KS 2018 (3.8) $\dfrac{4 + 4\%}{(\sqrt{4})\pmf} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2019 (4.0) $\dfrac{4 + 4\% - (\sqrt{4})\pmf}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2020 (3.6) $\dfrac{4}{(\sqrt{4})\pmf} + 4! - 4$ Steve Wilson, 5/24Lawrence, KS 2021 (3.0) $\dfrac{4}{.\overline{4} \times .\overline{4}\%} - 4$ Steve Wilson, 5/24Lawrence, KS 2022 (3.6) $\dfrac{4 + 44\pmf}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2023 (4.0) $\dfrac{4 - (\sqrt{4})\pmf}{\sqrt{4}\pmf} + 4!$ Steve Wilson, 5/24Lawrence, KS 2024 (3.4) $\dfrac{4 + 4}{4\pmf} + 4!$ Steve Wilson, 5/24Lawrence, KS 2025 (3.8) $\dfrac{4 + \dfrac{\sqrt{4\%}}{4}}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2026 (3.8) $\dfrac{4}{(\sqrt{4})\pmf} + 4! + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2027 (4.2) $\dfrac{4 + \dfrac{4!\pmf}{.\overline{4}}}{\sqrt{4}\pmf}$ Steve Wilson, 5/24Lawrence, KS 2028 (3.6) $\dfrac{4}{(\sqrt{4})\pmf} + 4! + 4$ Steve Wilson, 5/24Lawrence, KS 2029 (3.0) $\dfrac{4}{.\overline{4} \times .\overline{4}\%} + 4$ Steve Wilson, 5/24Lawrence, KS 2030 (3.8) $\dfrac{4 + \dfrac{4!\%}{4}}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2031 (5.0) $\dfrac{4}{(\sqrt{4})\pmf} + \cosh(\sqrt{4} \times \arcosh 4)$ Steve Wilson, 5/24Lawrence, KS 2032 (3.6) $\dfrac{4}{(\sqrt{4})\pmf} + \sqrt[.4]{4}$ Steve Wilson, 5/24Lawrence, KS 2033 (5.0) $\dfrac{4}{(\sqrt{4})\pmf} + \cosh(\sqrt{4} \times \arsinh 4)$ Steve Wilson, 5/24Lawrence, KS 2034 (3.2) $\dfrac{\dfrac{4}{.\overline{4}} + 4\%}{.\overline{4}\%}$ Steve Wilson, 5/24Lawrence, KS 2035 (5.4) $\dfrac{4 + (\sqrt{4})\%}{(\sqrt{4})\pmf} + \cot\arctan(4\%)$ Steve Wilson, 5/24Lawrence, KS 2036 (3.8) $\dfrac{(4 + 4)!\% + 4}{\sqrt{4\%}}$ Steve Wilson, 5/24Lawrence, KS 2037 (5.2) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) - \dfrac{4}{.4}$ Steve Wilson, 5/24Lawrence, KS 2038 (4.6) $\dfrac{\left(\sqrt{\sqrt{4^{4!}}}\right)\% - \sqrt{4\%}}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2039 (5.0) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) - 4 - 4$ Steve Wilson, 5/24Lawrence, KS 2040 (3.6) $\dfrac{4 + (4 + 4)\%}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2041 (5.2) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) - \dfrac{4!}{4}$ Steve Wilson, 5/24Lawrence, KS 2042 (5.2) $\dfrac{4! \times 4\%}{(\sech\ln 4)\pmf} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2043 (4.8) $\coth(\sqrt{4} \times \arcosh(\sqrt[.4]{4})) - 4$ Steve Wilson, 5/24Lawrence, KS 2044 (3.4) $\dfrac{4}{(\sqrt{4})\pmf} + 44$ Steve Wilson, 5/24Lawrence, KS 2045 (4.4) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{\sqrt{4\%}}{.\overline{4}\%}$ Steve Wilson, 5/24Lawrence, KS 2046 (3.8) $\sqrt[\sqrt{4\%}]{4} \times \sqrt{4} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2047 (4.0) $\dfrac{\sqrt{\sqrt{4^{4!}}} - \sqrt{4}}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2048 (3.0) $(4 + 4) \times 4^4$ Isaac Grosof, 2/09Mercer Island, WA 2049 (4.0) $\dfrac{\sqrt{\sqrt{4^{4!}}} + \sqrt{4}}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2050 (3.6) $\dfrac{4 + 4 + \sqrt{4\%}}{4\pmf}$ Steve Wilson, 5/24Lawrence, KS 2051 (4.8) $\coth(\sqrt{4} \times \arcosh(\sqrt[.4]{4})) + 4$ Steve Wilson, 5/24Lawrence, KS 2052 (3.6) $\sqrt[\sqrt{4\%}]{4} \times \sqrt{4} + 4$ Steve Wilson, 5/24Lawrence, KS 2053 (5.2) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) + \dfrac{4!}{4}$ Steve Wilson, 5/24Lawrence, KS 2054 (4.0) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{4!}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2055 (5.0) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) + 4 + 4$ Steve Wilson, 5/24Lawrence, KS 2056 (3.6) $(\sqrt[\sqrt{4\%}]{4} + 4) \times \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2057 (5.0) $\cosh(4 \times \arsinh 4) - \left(\dfrac{\sqrt{4}}{.4}\right)!$ Steve Wilson, 5/24Lawrence, KS 2058 (4.6) $\dfrac{\left(\sqrt{\sqrt{4^{4!}}}\right)\% + \sqrt{4\%}}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2059 (5.4) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) + \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2060 (3.6) $\dfrac{4 + 4 + 4!\%}{4\pmf}$ Steve Wilson, 5/24Lawrence, KS 2061 (5.4) $\dfrac{4 \times (4 + \cot\arctan(.\overline{4}\%))}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2062 (5.4) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{\sqrt{4}}{\tanh\ln\coth\arcosh 4}$ Steve Wilson, 5/24Lawrence, KS 2063 (5.0) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) + 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2064 (4.2) $\dfrac{4}{(\sqrt{4})\pmf} + \sqrt{\sqrt{\sqrt{4^{4!}}}}$ Steve Wilson, 5/24Lawrence, KS 2065 (5.4) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{\cosh\ln\sqrt{4\%}}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2066 (5.4) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{\sqrt{4}}{\tanh\ln\coth\arsinh 4}$ Steve Wilson, 5/24Lawrence, KS 2067 (5.4) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) + \dfrac{4}{\sqrt{4\%}}$ Steve Wilson, 5/24Lawrence, KS 2068 (4.4) $\dfrac{\left(\sqrt{\sqrt{4^{4!}}}\right)\% + .4}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2069 (5.6) $\dfrac{\coth\ln\coth\arsinh\sqrt{4}}{.\overline{4}\%} + 44$ Steve Wilson, 5/24Lawrence, KS 2070 (4.0) $\dfrac{(4! \times 4 - 4)\%}{.\overline{4}\pmf}$ Steve Wilson, 5/24Lawrence, KS 2071 (5.0) $\coth(\sqrt{4} \times \arcosh(\sqrt[.4]{4})) + 4!$ Steve Wilson, 5/24Lawrence, KS 2072 (3.8) $\sqrt[\sqrt{4\%}]{4} \times \sqrt{4} + 4!$ Steve Wilson, 5/24Lawrence, KS 2073 (5.4) $\dfrac{4}{(\sqrt{4})\pmf} + \coth\ln\coth\arsinh\left(\dfrac{4!}{4}\right)$ Steve Wilson, 5/24Lawrence, KS 2074 (4.0) $\left(\dfrac{4!}{\sqrt{.4}}\right)^4 \pm + .4$ Steve Wilson, 5/24Lawrence, KS 2075 (5.2) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{.4}{(\csch\ln 4)\%}$ Steve Wilson, 5/24Lawrence, KS 2076 (4.0) $\dfrac{4 + \sqrt{4\%}}{(\sqrt{4})\pmf} - 4!$ Steve Wilson, 5/24Lawrence, KS 2077 (4.6) $\cosh(4 \times \arsinh 4) - \dfrac{4}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2078 (5.4) $\sqrt{4} - 4! - \dfrac{\sqrt{4}}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2079 (4.4) $\dfrac{\dfrac{4}{.\overline{4}} - 4!\%}{.\overline{4}\%}$ Steve Wilson, 7/24Lawrence, KS 2080 (3.6) $\dfrac{4 + 4 \times 4\%}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2081 (4.6) $\cosh(4 \times \arsinh 4) - 4! \times 4$ Steve Wilson, 5/24Lawrence, KS 2082 (5.4) $\dfrac{\cot\arctan((\sqrt{4})\%\pm) - \sqrt[.4]{4}\phantom8}{4!}$ Steve Wilson, 5/24Lawrence, KS 2083 (5.2) $\dfrac{\cot\arctan((\sqrt{4})\%\pm) - 4 - 4\phantom8}{4!}$ Steve Wilson, 5/24Lawrence, KS 2084 (5.2) $\dfrac{\cot\arctan((\sqrt{4})\%\pm) + 4 \times 4\phantom8}{4!}$ Steve Wilson, 5/24Lawrence, KS 2085 (5.8) $\dfrac{\left(\dfrac{4!}{4}\right)! - \cot\arctan(4\%)}{\tanh\ln\sqrt{\sqrt{4}}}$ Steve Wilson, 5/24Lawrence, KS 2086 (5.4) $\left(\dfrac{4!}{.4} - .4\right) \times (4 + \coth\ln\coth\arcosh 4)$ Steve Wilson, 5/24Lawrence, KS 2087 (5.2) $\cosh(4 \times \arsinh 4) - \dfrac{.4}{.\overline{4}\%}$ Steve Wilson, 5/24Lawrence, KS 2088 (5.4) $\dfrac{\left(\dfrac{4!}{4}\right)! - 4!}{\tanh\ln\sqrt{\sqrt{4}}}$ Steve Wilson, 5/24Lawrence, KS 2089 (5.6) $\cosh(4 \times \arcosh 4) + \dfrac{4!}{\tanh\ln\coth\arcosh\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2090 (4.2) $\dfrac{4}{(\sqrt{4})\pmf} + \dfrac{.4}{.\overline{4}\%}$ Steve Wilson, 5/24Lawrence, KS 2091 (5.0) $\coth\ln\coth\arcosh(\sqrt[.4]{4}) + 44$ Steve Wilson, 5/24Lawrence, KS 2092 (5.2) $\dfrac{-\sqrt{4}}{(\csch\ln(.4))\pmf} - 4 - 4$ Steve Wilson, 5/24Lawrence, KS 2093 (5.6) $\dfrac{4 + \coth\ln\coth\arsinh\sqrt{4}}{\sech(4 \times \arsinh\sqrt{4})}$ Steve Wilson, 5/24Lawrence, KS 2094 (5.4) $\dfrac{-\sqrt{4}}{(\csch\ln(.4))\pmf} - 4 - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2095 (5.6) $\dfrac{-\sqrt{4}}{(\csch\ln(.4))\pmf} - \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2096 (3.6) $\dfrac{4}{(\sqrt{4})\pmf} + 4 \times 4!$ Steve Wilson, 5/24Lawrence, KS 2097 (5.0) $\dfrac{4}{(\sqrt{4})\pmf} + \cosh(4 \times \arcosh\sqrt{4})$ Steve Wilson, 5/24Lawrence, KS 2098 (4.0) $\dfrac{4 + \sqrt{4\%}}{(\sqrt{4})\pmf} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2099 (4.2) $\dfrac{4 + \sqrt{4\%} - (\sqrt{4})\pmf}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2100 (2.4) $\dfrac{4.4 + 4}{.4\%}$ Steve Wilson, 5/24Lawrence, KS 2101 (4.2) $\dfrac{4 + \sqrt{4\%} + (\sqrt{4})\pmf}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2102 (4.0) $\dfrac{4 + \sqrt{4\%}}{(\sqrt{4})\pmf} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2103 (5.4) $\log\left(\dfrac{4}{4\pmf}\right) - \dfrac{\sqrt{4}}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2104 (3.8) $\dfrac{4 + \sqrt{4\%}}{(\sqrt{4})\pmf} + 4$ Steve Wilson, 5/24Lawrence, KS 2105 (5.4) $\dfrac{\sqrt{4}}{.4} - \dfrac{\sqrt{4}}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2106 (5.2) $4 + \sqrt{4} - \dfrac{\sqrt{4}}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2107 (5.8) $\dfrac{\sqrt{4} - 4 - \left(\sqrt{.\overline{4}}\right)\%}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2108 (5.0) $4 + 4 - \dfrac{\sqrt{4}}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2109 (5.6) $\dfrac{\cosh\ln(.4) - 4.4\%}{\sqrt{.\overline{4}}\pmf}$ Steve Wilson, 5/24Lawrence, KS 2110 (4.0) $\dfrac{4 + (4! - \sqrt{4})\%}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2111 (5.6) $\dfrac{\cosh\ln(.4) - 4\%}{\left(\sqrt{.\overline{4}}\right)\pmf} - 4$ Steve Wilson, 5/24Lawrence, KS 2112 (3.4) $4! \times 44 \times \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2113 (5.2) $\cosh(4 \times \arsinh 4) - \sqrt{\sqrt{\sqrt{4^{4!}}}}$ Steve Wilson, 5/24Lawrence, KS 2114 (5.2) $\sqrt{(\cot\arctan((\sqrt{4})\%) - 4)^4} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2115 (5.6) $\dfrac{\cosh\ln(.4) - 4\%}{\sqrt{.\overline{44}}\pmf}$ Steve Wilson, 5/24Lawrence, KS 2116 (3.4) $\sqrt{(44 + \sqrt{4})^4}$ Steve Wilson, 5/24Lawrence, KS 2117 (4.8) $\cosh(4 \times \arsinh 4) - \dfrac{4!}{.4}$ Steve Wilson, 5/24Lawrence, KS 2118 (4.0) $\dfrac{4 + 4!\%}{(\sqrt{4})\pmf} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2119 (5.6) $\dfrac{\cosh\ln(.4) - 4\%}{\sqrt{.\overline{4}}\pmf} + 4$ Steve Wilson, 5/24Lawrence, KS 2120 (3.8) $(4 + 4!\%) \times \dfrac{\sqrt{4}}{4\pmf}$ Steve Wilson, 5/24Lawrence, KS 2121 (5.4) $\dfrac{(-4 - 4\%) \times \sinh\ln(.4)}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2122 (4.0) $\dfrac{4 + 4!\%}{(\sqrt{4})\pmf} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2123 (5.0) $\cosh(4 \times \arsinh 4) - \dfrac{4!}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2124 (3.8) $\dfrac{4 + 4!\%}{(\sqrt{4})\pmf} + 4$ Steve Wilson, 5/24Lawrence, KS 2125 (3.8) $\sqrt[-.4]{4\%} - \dfrac{4}{4\pmf}$ Steve Wilson, 7/24Lawrence, KS 2126 (5.4) $4! + \sqrt{4} - \dfrac{\sqrt{4}}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2127 (4.8) $\cosh(4 \times \arsinh 4) - \dfrac{\sqrt{4}}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2128 (5.2) $4! + 4 - \dfrac{\sqrt{4}}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2129 (4.8) $\cosh(4 \times \arsinh 4) - 4! \times \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2130 (4.0) $\dfrac{4 + (4! + \sqrt{4})\%}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2131 (5.4) $\dfrac{\cosh\ln(.4)}{\left(\sqrt{.\overline{4}}\right)\pmf} - 44$ Steve Wilson, 5/24Lawrence, KS 2132 (5.2) $\sqrt[.4]{4} - \dfrac{\sqrt{4}}{(\csch\ln(.4))\pmf}$ Steve Wilson, 5/24Lawrence, KS 2133 (4.4) $\cosh(4 \times \arsinh 4) - 44$ Steve Wilson, 5/24Lawrence, KS 2134 (5.4) $\cot\arctan(.\overline{4}\pm) - \antilog\sqrt{4} - 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2135 (5.8) $\dfrac{\cosh\ln(.4) - 4!\pmf}{\sqrt{.\overline{4}}\pmf} - 4$ Steve Wilson, 5/24Lawrence, KS 2136 (4.0) $\dfrac{(4 + 4)!\% + 4!}{\sqrt{4\%}}$ Steve Wilson, 5/24Lawrence, KS 2137 (5.6) $\cosh(4 \times \arcosh 4) + \dfrac{4!}{\tanh\ln\coth\arsinh\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2138 (5.8) $\cot\arctan(.\overline{4}\pm) - \antilog\sqrt{4} - \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2139 (5.8) $\dfrac{\cosh\ln(.4) - 4\%}{\sqrt{.\overline{4}}\pmf} + 4!$ Steve Wilson, 5/24Lawrence, KS 2140 (3.8) $\dfrac{4 + (4! + 4)\%}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2141 (5.2) $\cosh(4 \times \arsinh 4) - \dfrac{4!}{\sqrt{.\overline{4}}}$ Steve Wilson, 5/24Lawrence, KS 2142 (5.4) $\cot\arctan(.\overline{4}\pm) - \antilog\sqrt{4} - 4 - 4$ Steve Wilson, 5/24Lawrence, KS 2143 (5.8) $\dfrac{\cosh\ln(.4) - 4!\pmf}{\sqrt{.\overline{4}}\pmf} + 4$ Steve Wilson, 5/24Lawrence, KS 2144 (4.0) $\dfrac{4 + 4!\%}{(\sqrt{4})\pmf} + 4!$ Steve Wilson, 5/24Lawrence, KS 2145 (4.6) $\cosh(4 \times \arsinh 4) - \sqrt[.4]{4}$ Steve Wilson, 5/24Lawrence, KS 2146 (5.2) $\cot\arctan(.\overline{4}\pm) - \dfrac{4}{4\%} - 4$ Steve Wilson, 5/24Lawrence, KS 2147 (5.2) $\cosh(4 \times \arsinh 4) - \sqrt{\dfrac{4}{.\overline{4}\%}}$ Steve Wilson, 5/24Lawrence, KS 2148 (4.4) $\dfrac{\left(\sqrt{\sqrt{4^{4!}}}\right)\% + \sqrt{4}}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2149 (4.6) $\cosh(4 \times \arsinh 4) - 4! - 4$ Steve Wilson, 5/24Lawrence, KS 2150 (3.0) $\dfrac{\dfrac{4}{.\overline{4}} - .4}{.4\%}$ Steve Wilson, 5/24Lawrence, KS 2151 (4.8) $\cosh(4 \times \arsinh 4) - 4! - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2152 (5.4) $\cot\arctan(.\overline{4}\pm) - \dfrac{4}{4\%} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2153 (5.8) $\dfrac{\cosh\ln(.4)}{\left(\sqrt{.\overline{4}}\right)\pmf} - 4! + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2154 (4.4) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - 4 \times 4!$ Steve Wilson, 5/24Lawrence, KS 2155 (4.8) $\cosh(4 \times \arsinh 4) - 4! + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2156 (5.2) $\dfrac{\left(\dfrac{4!}{4}\right)!}{\tanh\ln\sqrt{\sqrt{4}}} - 4$ Steve Wilson, 5/24Lawrence, KS 2157 (4.6) $\cosh(4 \times \arsinh 4) - 4! + 4$ Steve Wilson, 5/24Lawrence, KS 2158 (5.4) $\dfrac{\left(\dfrac{4!}{4}\right)!}{\tanh\ln\sqrt{\sqrt{4}}} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2159 (5.4) $\dfrac{\cosh\ln(.4)}{\left(\sqrt{.\overline{4}}\right)\pmf} - 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2160 (3.6) $\dfrac{4!}{4\%} \times (4 - .4)$ Steve Wilson, 5/24Lawrence, KS 2161 (4.8) $\cosh(4 \times \arsinh 4) - 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2162 (5.4) $\dfrac{\left(\dfrac{4!}{4}\right)!}{\tanh\ln\sqrt{\sqrt{4}}} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2163 (5.8) $\dfrac{\cosh\ln(.4)}{\left(\sqrt{.\overline{4}}\right)\pmf} - \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2164 (5.2) $\dfrac{\left(\dfrac{4!}{4}\right)!}{\tanh\ln\sqrt{\sqrt{4}}} + 4$ Steve Wilson, 5/24Lawrence, KS 2165 (4.8) $\cosh(4 \times \arsinh 4) - \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2166 (5.4) $\dfrac{\left(\dfrac{4!}{4}\right)! + \sqrt{4}}{\tanh\ln\sqrt{\sqrt{4}}}$ Steve Wilson, 5/24Lawrence, KS 2167 (4.6) $\cosh(4 \times \arsinh 4) - \dfrac{4}{.4}$ Steve Wilson, 5/24Lawrence, KS 2168 (4.8) $\cosh(4 \times \arsinh 4) - \dfrac{4}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2169 (4.4) $\cosh(4 \times \arsinh 4) - 4 - 4$ Steve Wilson, 5/24Lawrence, KS 2170 (4.4) $\dfrac{(4! \times 4 + .\overline{4})\%}{.\overline{4}\pmf}$ Steve Wilson, 5/24Lawrence, KS 2171 (4.6) $\cosh(4 \times \arsinh 4) - \dfrac{4!}{4}$ Steve Wilson, 5/24Lawrence, KS 2172 (4.8) $\cosh(4 \times \arsinh 4) - \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2173 (4.6) $\cosh(4 \times \arsinh 4) - \sqrt{4 \times 4}$ Steve Wilson, 5/24Lawrence, KS 2174 (4.8) $\cosh(4 \times \arsinh 4) - \log\left(\dfrac{4}{4\pmf}\right)$ Steve Wilson, 5/24Lawrence, KS 2175 (4.6) $\cosh(4 \times \arsinh 4) - \dfrac{4}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2176 (3.6) $\dfrac{44}{(\sqrt{4})\%} - 4!$ Steve Wilson, 5/24Lawrence, KS 2177 (4.4) $\cosh(4 \times \arcosh 4) + 4^4$ Steve Wilson, 9/23Lawrence, KS 2178 (4.4) $\cosh(4 \times \arsinh 4) + \dfrac44$ Steve Wilson, 5/24Lawrence, KS 2179 (4.6) $\cosh(4 \times \arsinh 4) + \dfrac{4}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2180 (3.6) $\dfrac{4.4 - 4\%}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2181 (4.6) $\cosh(4 \times \arsinh 4) + \sqrt{4 \times 4}$ Steve Wilson, 5/24Lawrence, KS 2182 (4.8) $\cosh(4 \times \arsinh 4) + \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2183 (4.6) $\cosh(4 \times \arsinh 4) + \dfrac{4!}{4}$ Steve Wilson, 5/24Lawrence, KS 2184 (5.0) $4! \times \left(\antilog\sqrt{4} - \dfrac{4}{.\overline{4}}\right)$ Steve Wilson, 5/24Lawrence, KS 2185 (4.4) $\cosh(4 \times \arsinh 4) + 4 + 4$ Steve Wilson, 5/24Lawrence, KS 2186 (4.8) $\cosh(4 \times \arsinh 4) + \dfrac{4}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2187 (4.6) $\cosh(4 \times \arsinh 4) + \dfrac{4}{.4}$ Steve Wilson, 5/24Lawrence, KS 2188 (3.8) $\dfrac{44 - 4!\%}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2189 (4.8) $\cosh(4 \times \arsinh 4) + \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2190 (3.8) $\dfrac{44 - \sqrt{4\%}}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2191 (5.4) $\dfrac{\cosh\ln(.4)}{\left(\sqrt{.\overline{4}}\right)\pmf} + 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2192 (5.2) $\dfrac{44}{(\sqrt{4})\%} - \arcosh\coth\ln\coth 4$ Steve Wilson, 5/24Lawrence, KS 2193 (4.8) $\cosh(4 \times \arsinh 4) + 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2194 (5.4) $\dfrac{44}{(\sqrt{4})\%} - \ln\sqrt{\sqrt{\exp(4!)}}$ Steve Wilson, 5/24Lawrence, KS 2195 (5.6) $\dfrac{\cosh\ln(.4)}{\left(\sqrt{.\overline{4}}\right)\pmf} + 4! - 4$ Steve Wilson, 5/24Lawrence, KS 2196 (3.4) $\dfrac{44}{(\sqrt{4})\%} - 4$ Steve Wilson, 5/24Lawrence, KS 2197 (4.6) $\cosh(4 \times \arsinh 4) + 4! - 4$ Steve Wilson, 5/24Lawrence, KS 2198 (3.6) $\dfrac{44}{(\sqrt{4})\%} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2199 (3.8) $\dfrac{44 - (\sqrt{4})\%}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2200 (3.4) $\dfrac{44 \times \sqrt{4}}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2201 (3.8) $\dfrac{44 + (\sqrt{4})\%}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2202 (3.6) $\dfrac{44}{(\sqrt{4})\%} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2203 (4.8) $\cosh(4 \times \arsinh 4) + 4! + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2204 (3.4) $\dfrac{44}{(\sqrt{4})\%} + 4$ Steve Wilson, 5/24Lawrence, KS 2205 (4.6) $\cosh(4 \times \arsinh 4) + 4! + 4$ Steve Wilson, 5/24Lawrence, KS 2206 (4.2) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - 44$ Steve Wilson, 5/24Lawrence, KS 2207 (5.2) $\cosh(4 \times \arsinh 4) + \sqrt{\dfrac{4}{.\overline{4}\%}}$ Steve Wilson, 5/24Lawrence, KS 2208 (5.0) $(\cot\arctan(4\%) - \sqrt{4}) \times 4 \times 4!$ Steve Wilson, 5/24Lawrence, KS 2209 (4.6) $\cosh(4 \times \arsinh 4) + \sqrt[.4]{4}$ Steve Wilson, 5/24Lawrence, KS 2210 (3.8) $\dfrac{44 + \sqrt{4\%}}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2211 (5.8) $\dfrac{\cosh\ln(.4) + 4\%}{\sqrt{.\overline{4}}\pmf} - 4!$ Steve Wilson, 5/24Lawrence, KS 2212 (3.8) $\dfrac{44 + 4!\%}{(\sqrt{4})\%}$ Steve Wilson, 5/24Lawrence, KS 2213 (5.2) $\cosh(4 \times \arsinh 4) + \dfrac{4!}{\sqrt{.\overline{4}}}$ Steve Wilson, 5/24Lawrence, KS 2214 (5.0) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - \dfrac{4!}{\sqrt{.\overline{4}}}$ Steve Wilson, 5/24Lawrence, KS 2215 (5.8) $\dfrac{\cosh\ln(.4) + 4!\pmf}{\sqrt{.\overline{4}}\pmf} + 4$ Steve Wilson, 5/24Lawrence, KS 2216 (5.6) $\dfrac{44}{(\sqrt{4})\%} + \dfrac{4!}{\tanh\ln\coth\arsinh\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2217 (4.8) $\cosh(4 \times \arsinh 4) + 4\pm \times \antilog 4$ Steve Wilson, 5/24Lawrence, KS 2218 (4.4) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - \sqrt[.4]{4}$ Steve Wilson, 5/24Lawrence, KS 2219 (5.4) $\dfrac{\cosh\ln(.4)}{\left(\sqrt{.\overline{4}}\right)\pmf} + 44$ Steve Wilson, 5/24Lawrence, KS 2220 (3.4) $\dfrac{4.44}{(\sqrt{4})\pmf}$ Steve Wilson, 11/09Raytown, MO 2221 (4.4) $\cosh(4 \times \arsinh 4) + 44$ Steve Wilson, 5/24Lawrence, KS 2222 (4.2) $\dfrac{4.\overline{4} - .\overline{4}\pmf}{(\sqrt{4})\pmf}$ Steve Wilson, 11/09Raytown, MO 2223 (5.8) $\dfrac{\cosh\ln(.4)}{\left(\sqrt{.\overline{4}}\right)\pmf} + 4! \times \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2224 (3.6) $\dfrac{44}{(\sqrt{4})\%} + 4!$ Steve Wilson, 5/24Lawrence, KS 2225 (3.6) $\dfrac{.4 - .\overline{4}\%}{4\% \times .\overline{4}\%}$ Steve Wilson, 5/24Lawrence, KS 2226 (4.0) $\dfrac{4}{.4 \times .\overline{4}\%} - 4!$ Steve Wilson, 5/24Lawrence, KS 2227 (4.8) $\cosh(4 \times \arsinh 4) + \dfrac{\sqrt{4}}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2228 (4.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - 4! + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2229 (5.8) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - \cot\arctan(4\%) + 4$ Steve Wilson, 5/24Lawrence, KS 2230 (4.2) $\dfrac{\dfrac{\sqrt{4}}{.\overline{4}\%} - 4}{\sqrt{4\%}}$ Steve Wilson, 5/24Lawrence, KS 2231 (5.0) $\cosh(4 \times \arsinh 4) + \dfrac{4!}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2232 (5.4) $\dfrac{\left(\dfrac{4!}{4}\right)! + 4!}{\tanh\ln\sqrt{\sqrt{4}}}$ Steve Wilson, 5/24Lawrence, KS 2233 (5.8) $\dfrac{\cosh\ln(.4) + 4\%}{\sqrt{.\overline{4}}\pmf} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2234 (4.2) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2235 (5.6) $\dfrac{\cosh\ln(.4) + 4\%}{\sqrt{.\overline{44}}\pmf}$ Steve Wilson, 5/24Lawrence, KS 2236 (5.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - (\antilog 4)\pm - 4$ Steve Wilson, 5/24Lawrence, KS 2237 (4.8) $\cosh(4 \times \arsinh 4) + \dfrac{4!}{.4}$ Steve Wilson, 5/24Lawrence, KS 2238 (4.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2239 (5.6) $\dfrac{\cosh\ln(.4) + 4\%}{\sqrt{.\overline{4}}\pmf} + 4$ Steve Wilson, 5/24Lawrence, KS 2240 (2.8) $\dfrac{\dfrac{4}{.\overline{4}\%} - 4}{.4}$ Steve Wilson, 5/24Lawrence, KS 2241 (2.8) $\dfrac{\dfrac{4}{.4\%} - 4}{.\overline{4}}$ Steve Wilson, 6/24Lawrence, KS 2242 (4.2) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - 4 - 4$ Steve Wilson, 5/24Lawrence, KS 2243 (5.2) $\cot\arctan(.\overline{4}\pm) - \dfrac{4! + 4}{4}$ Steve Wilson, 5/24Lawrence, KS 2244 (3.8) $\sqrt{((\sqrt{4})\%)^{-4}} - 4^4$ Steve Wilson, 5/24Lawrence, KS 2245 (4.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2246 (2.8) $\dfrac{4}{.4 \times .\overline{4}\%} - 4$ Steve Wilson, 5/24Lawrence, KS 2247 (4.8) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - \sqrt{\dfrac{4}{.\overline{4}}}$ Steve Wilson, 5/24Lawrence, KS 2248 (4.0) $\dfrac{4}{.4 \times .\overline{4}\%} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2249 (4.2) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} - \dfrac44$ Steve Wilson, 5/24Lawrence, KS 2250 (2.8) $\dfrac{4}{.4 \times .\overline{44}\%}$ Steve Wilson, 5/24Lawrence, KS 2251 (4.2) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + \dfrac44$ Steve Wilson, 5/24Lawrence, KS 2252 (4.0) $\dfrac{4}{.4 \times .\overline{4}\%} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2253 (4.8) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + \sqrt{\dfrac{4}{.\overline{4}}}$ Steve Wilson, 5/24Lawrence, KS 2254 (2.8) $\dfrac{4}{.4 \times .\overline{4}\%} + 4$ Steve Wilson, 5/24Lawrence, KS 2255 (4.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2256 (3.8) $\dfrac{4!}{4\%} \times (4 - 4!\%)$ Steve Wilson, 5/24Lawrence, KS 2257 (5.2) $\cot\arctan(.\overline{4}\pm) + \dfrac{4! + 4}{4}$ Steve Wilson, 5/24Lawrence, KS 2258 (4.2) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + 4 + 4$ Steve Wilson, 5/24Lawrence, KS 2259 (2.8) $\dfrac{\dfrac{4}{.4\%} + 4}{.\overline{4}}$ Steve Wilson, 6/24Lawrence, KS 2260 (2.8) $\dfrac{\dfrac{4}{.\overline{4}\%} + 4}{.4}$ Steve Wilson, 5/24Lawrence, KS 2261 (5.0) $\cot\arctan(.\overline{4}\pm) + \dfrac{44}{4}$ Steve Wilson, 5/24Lawrence, KS 2262 (4.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2263 (5.6) $\cot\arctan(.\overline{4}\pm) + \dfrac{4! + \sqrt{4}}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2264 (5.4) $\cot\arctan(.\overline{4}\pm) + \dfrac{4! + 4}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2265 (5.4) $\cot\arctan(.\overline{4}\pm) + \dfrac{4!}{4 \times .4}$ Steve Wilson, 5/24Lawrence, KS 2266 (4.2) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2267 (5.8) $\cot\arctan(.\overline{44}\pm) + \cosh\left(4 \times \arcosh\sqrt{\sqrt{4}}\right)$ Steve Wilson, 5/24Lawrence, KS 2268 (5.4) $\cot\arctan(.\overline{4}\pm) + \dfrac{4 + 4}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2269 (5.6) $\cot\arctan(.\overline{4}\pm) + 4! - \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2270 (4.2) $\dfrac{4 + \dfrac{4!\%}{.\overline{4}}}{(\sqrt{4})\pmf}$ Steve Wilson, 11/09Raytown, MO 2271 (5.6) $\cot\arctan(.\overline{4}\pm) + 4! - \log\left(\dfrac{4}{4\pmf}\right)$ Steve Wilson, 6/24Lawrence, KS 2272 (4.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + 4! - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2273 (4.6) $\cosh(4 \times \arsinh 4) + 4! \times 4$ Steve Wilson, 5/24Lawrence, KS 2274 (4.0) $\dfrac{4}{.4 \times .\overline{4}\%} + 4!$ Steve Wilson, 5/24Lawrence, KS 2275 (3.6) $\dfrac{.4 + .\overline{4}\%}{4\% \times .\overline{4}\%}$ Steve Wilson, 5/24Lawrence, KS 2276 (4.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + 4! + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2277 (4.6) $\cosh(4 \times \arsinh 4) + \dfrac{4}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2278 (4.4) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + 4! + 4$ Steve Wilson, 5/24Lawrence, KS 2279 (5.6) $\cot\arctan(.\overline{4}\pm) + 4! + \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2280 (3.6) $4! \times 4! \times 4 - 4!$ Steve Wilson, 5/24Lawrence, KS 2281 (5.6) $\cot\arctan(.\overline{44}\pm) +\cosh(\sqrt{4} \times \arcosh 4)$ Steve Wilson, 5/24Lawrence, KS 2282 (4.4) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + \sqrt[.4]{4}$ Steve Wilson, 5/24Lawrence, KS 2283 (5.6) $\cot\arctan(.\overline{44}\pm) +\cosh(\sqrt{4} \times \arsinh 4)$ Steve Wilson, 5/24Lawrence, KS 2284 (5.4) $\cot\arctan(.\overline{4}\pm) + \sqrt[.4]{4} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2285 (5.6) $\cot\arctan(.\overline{4}\pm) +\cosh(\sqrt{4} \times \arcosh 4) + 4$ Steve Wilson, 5/24Lawrence, KS 2286 (5.2) $\cot\arctan(.\overline{4}\pm) + \sqrt[.4]{4} +4$ Steve Wilson, 5/24Lawrence, KS 2287 (5.4) $\coth\ln\coth\arcosh\left(4! + \dfrac{4}{.4}\right) - 4!$ Steve Wilson, 5/24Lawrence, KS 2288 (4.0) $\dfrac{4 + 4! \times 4!\pmf}{(\sqrt{4})\pmf}$ Steve Wilson, 11/09Raytown, MO 2289 (5.4) $\coth\ln\coth\arsinh\left(4! + \dfrac{4}{.4}\right) - 4!$ Steve Wilson, 5/24Lawrence, KS 2290 (5.4) $\cot\arctan(.\overline{4}\pm) +\dfrac{4 + 4}{\sqrt{4\%}}$ Steve Wilson, 5/24Lawrence, KS 2291 (5.6) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) - 4! + 4$ Steve Wilson, 5/24Lawrence, KS 2292 (5.2) $\cot\arctan(.\overline{4}\pm) + 44 - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2293 (5.6) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) - 4! + 4$ Steve Wilson, 5/24Lawrence, KS 2294 (4.2) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + 44$ Steve Wilson, 5/24Lawrence, KS 2295 (3.8) $\dfrac{\sqrt[\sqrt{4\%}]{4} - 4}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2296 (5.2) $\cot\arctan(.\overline{4}\pm) + 44 + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2297 (5.0) $\cosh(4 \times \arsinh 4) + \left(\dfrac{\sqrt{4}}{.4}\right)!$ Steve Wilson, 5/24Lawrence, KS 2298 (4.6) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + 4! \times \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2299 (5.4) $\sqrt{(4! \times \sqrt{4})^4} - \cot\arctan(\sqrt{4\%})$ Steve Wilson, 5/24Lawrence, KS 2300 (3.4) $4! \times 4! \times 4 - 4$ Steve Wilson, 5/24Lawrence, KS 2301 (5.6) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) - \dfrac{4}{.4}$ Steve Wilson, 5/24Lawrence, KS 2302 (3.6) $4! \times 4! \times 4 - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2303 (4.2) $\dfrac{\sqrt[\sqrt{4\%}]{4} - .\overline{4}}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2304 (3.4) $4! \times \left( \dfrac{4}{4\%} - 4\right)$ Steve Wilson, 5/24Lawrence, KS 2305 (4.2) $\dfrac{\sqrt[\sqrt{4\%}]{4} + .\overline{4}}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2306 (3.6) $4! \times 4! \times 4 + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2307 (5.2) $\coth\ln\coth\arcosh\left(4! + \dfrac{4}{.4}\right) - 4$ Steve Wilson, 5/24Lawrence, KS 2308 (3.4) $4! \times 4! \times 4 + 4$ Steve Wilson, 5/24Lawrence, KS 2309 (5.2) $\coth\ln\coth\arsinh\left(4! + \dfrac{4}{.4}\right) - 4$ Steve Wilson, 5/24Lawrence, KS 2310 (4.0) $\dfrac{\dfrac{4}{.\overline{4}\%} + 4!}{.4}$ Steve Wilson, 5/24Lawrence, KS 2311 (5.0) $\coth\ln\coth\arcosh\left(44 - \dfrac{4}{.4}\right)$ Steve Wilson, 5/24Lawrence, KS 2312 (5.4) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + \dfrac44$ Steve Wilson, 5/24Lawrence, KS 2313 (3.8) $\dfrac{\sqrt[\sqrt{4\%}]{4} + 4}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2314 (5.4) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + \dfrac44$ Steve Wilson, 5/24Lawrence, KS 2315 (5.2) $\coth\ln\coth\arcosh\left(4! + \dfrac{4}{.4}\right) + 4$ Steve Wilson, 5/24Lawrence, KS 2316 (5.8) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2317 (5.2) $\coth\ln\coth\arsinh\left(4! + \dfrac{4}{.4}\right) + 4$ Steve Wilson, 5/24Lawrence, KS 2318 (5.8) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + \dfrac{\sqrt{4}}{.4}$ Steve Wilson, 5/24Lawrence, KS 2319 (5.4) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + 4 + 4$ Steve Wilson, 5/24Lawrence, KS 2320 (5.6) $\dfrac{(\cot\arctan(4\%) + 4) \times \sqrt{4}}{(\cot\arctan(.4)\%}$ Steve Wilson, 5/24Lawrence, KS 2321 (5.6) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + \dfrac{4}{.4}$ Steve Wilson, 5/24Lawrence, KS 2322 (5.8) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + \dfrac{4}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2323 (5.6) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + \dfrac{4}{.4}$ Steve Wilson, 5/24Lawrence, KS 2324 (5.2) $4! \times \antilog\sqrt{4} - \antilog\sqrt{4} + 4!$ Steve Wilson, 5/24Lawrence, KS 2325 (5.2) $4! \times (\antilog\sqrt{4} - \cosh\ln 4) - 4!$ Steve Wilson, 5/24Lawrence, KS 2326 (5.4) $(\cosh(\sqrt{4} \times \arsinh(4!)) + (\antilog 4)\pm) \times \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2327 (5.6) $4! \times \antilog\sqrt{4} - \coth\ln\coth\arsinh\left(\dfrac{4!}{4}\right)$ Steve Wilson, 5/24Lawrence, KS 2328 (3.6) $4! \times 4! \times 4 + 4!$ Steve Wilson, 5/24Lawrence, KS 2329 (5.4) $4! \times \antilog\sqrt{4} - \cosh(4 \times \arcsch\sqrt{.4})$ Steve Wilson, 5/24Lawrence, KS 2330 (5.6) $\dfrac{\coth\ln\coth\arsinh\sqrt{4} + (\sqrt[.4]{4})\%}{4\pmf}$ Steve Wilson, 5/24Lawrence, KS 2331 (5.6) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + 4! - 4$ Steve Wilson, 5/24Lawrence, KS 2332 (5.6) $4 \times \left(\dfrac{\cosh\ln\sqrt{4\%}}{.\overline{4}\%} - \sqrt{4}\right)$ Steve Wilson, 5/24Lawrence, KS 2333 (5.6) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + 4! - 4$ Steve Wilson, 5/24Lawrence, KS 2334 (5.6) $4! \times \antilog\sqrt{4} - \dfrac{\sqrt{4}}{\tanh\ln\coth\arsinh 4}$ Steve Wilson, 5/24Lawrence, KS 2335 (5.4) $\coth\ln\coth\arcosh\left(4! + \dfrac{4}{.4}\right) + 4!$ Steve Wilson, 5/24Lawrence, KS 2336 (5.4) $4! \times \antilog\sqrt{4} - \sqrt{\sqrt{\sqrt{4^{4!}}}}$ Steve Wilson, 5/24Lawrence, KS 2337 (5.4) $\coth\ln\coth\arsinh\left(4! + \dfrac{4}{.4}\right) + 4!$ Steve Wilson, 5/24Lawrence, KS 2338 (5.6) $4! \times \antilog\sqrt{4} - \dfrac{\sqrt{4}}{\tanh\ln\coth\arcosh 4}$ Steve Wilson, 5/24Lawrence, KS 2339 (5.6) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + 4! + 4$ Steve Wilson, 5/24Lawrence, KS 2340 (3.0) $\dfrac{\dfrac{4}{.4} + .4}{.\overline{4}\%}$ Steve Wilson, 5/24Lawrence, KS 2341 (5.6) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + 4! + 4$ Steve Wilson, 5/24Lawrence, KS 2342 (5.6) $4 \times \dfrac{\cosh\ln\sqrt{4\%}}{.\overline{4}\%} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2343 (5.6) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + \sqrt[.4]{4}$ Steve Wilson, 5/24Lawrence, KS 2344 (5.6) $4! \times \antilog\sqrt{4} + \dfrac{4!}{\tanh\ln\sqrt{.4}}$ Steve Wilson, 5/24Lawrence, KS 2345 (5.0) $4! \times (\antilog\sqrt{4} - \cosh\ln 4) - 4$ Steve Wilson, 5/24Lawrence, KS 2346 (4.4) $\sqrt{\sqrt{(.\overline{4}\pm)^{-4}\phantom8}} + 4 \times 4!$ Steve Wilson, 5/24Lawrence, KS 2347 (5.2) $4! \times (\antilog\sqrt{4} - \cosh\ln 4) - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2348 (4.8) $4! \times (\antilog\sqrt{4} - \sqrt{4}) - 4$ Steve Wilson, 5/24Lawrence, KS 2349 (5.2) $4! \times \antilog\sqrt{4} - 4! \times \cosh\ln 4$ Steve Wilson, 5/24Lawrence, KS 2350 (3.0) $\dfrac{\dfrac{4}{.\overline{4}} + .4}{.4\%}$ Steve Wilson, 5/24Lawrence, KS 2351 (5.4) $4! \times \antilog\sqrt{4} - \cosh\left(4 \times \arsinh\sqrt{\sqrt{4}}\right)$ Steve Wilson, 5/24Lawrence, KS 2352 (3.6) $4! \times \left( \dfrac{4}{4\%} - \sqrt{4}\right)$ Steve Wilson, 5/24Lawrence, KS 2353 (5.0) $4! \times (\antilog\sqrt{4} - \cosh\ln 4) + 4$ Steve Wilson, 5/24Lawrence, KS 2354 (5.2) $(\cosh(\sqrt{4} \times \arsinh(4!)) + 4!) \times \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2355 (5.4) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + 44$ Steve Wilson, 5/24Lawrence, KS 2356 (4.6) $4! \times \antilog\sqrt{4} - 44$ Steve Wilson, 5/24Lawrence, KS 2357 (5.4) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + 44$ Steve Wilson, 5/24Lawrence, KS 2358 (5.4) $(\coth\ln\coth\arsinh(4!) + 4!) \times \sqrt{4} + 4$ Steve Wilson, 5/24Lawrence, KS 2359 (5.8) $\coth\ln\coth\arcosh(4! + (\antilog 4)\pm) + 4! + 4!$ Steve Wilson, 5/24Lawrence, KS 2360 (3.6) $(4! - .4) \times \dfrac{4}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2361 (5.8) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + 4! + 4!$ Steve Wilson, 5/24Lawrence, KS 2362 (5.4) $(\coth\ln\coth\arsinh(4!) + 4! + 4) \times \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2363 (5.8) $\coth\ln\coth\arsinh(4! + (\antilog 4)\pm) + \dfrac{\sqrt{4}}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2364 (5.4) $4! \times \antilog\sqrt{4} - \dfrac{4!}{\sqrt{.\overline{4}}}$ Steve Wilson, 5/24Lawrence, KS 2365 (5.4) $4! \times \antilog\sqrt{4} - 4 - \coth\ln\coth\arcosh 4$ Steve Wilson, 5/24Lawrence, KS 2366 (5.2) $4! \times \antilog\sqrt{4} - 4! - (\antilog 4)\pm$ Steve Wilson, 5/24Lawrence, KS 2367 (5.2) $4! \times \antilog\sqrt{4} - \cosh(\sqrt{4} \times \arsinh 4)$ Steve Wilson, 5/24Lawrence, KS 2368 (4.8) $4! \times \antilog\sqrt{4} - \sqrt[.4]{4}$ Steve Wilson, 5/24Lawrence, KS 2369 (5.2) $4! \times \antilog\sqrt{4} - \cosh(\sqrt{4} \times \arcosh 4)$ Steve Wilson, 5/24Lawrence, KS 2370 (4.4) $\dfrac{\dfrac{\sqrt{4}}{.\overline{4}} + 4!\%}{(\sqrt{4})\pmf}$ Steve Wilson, 5/24Lawrence, KS 2371 (5.0) $(4! - \cot\arctan 4) \times \antilog\sqrt{4} - 4$ Steve Wilson, 5/24Lawrence, KS 2372 (4.8) $4! \times \antilog\sqrt{4} - 4! - 4$ Steve Wilson, 5/24Lawrence, KS 2373 (5.2) $(4! - \cot\arctan 4) \times \antilog\sqrt{4} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2374 (5.0) $4! \times \antilog\sqrt{4} - 4! - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2375 (5.0) $4! \times \antilog\sqrt{4} - \dfrac{\antilog\sqrt{4}}{4}$ Steve Wilson, 5/24Lawrence, KS 2376 (3.6) $\dfrac{4 \times 4!}{4\%} - 4!$ Steve Wilson, 5/24Lawrence, KS 2377 (5.2) $(4! - \cot\arctan 4) \times \antilog\sqrt{4} + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2378 (5.0) $4! \times \antilog\sqrt{4} - 4! + \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2379 (5.0) $(4! - \cot\arctan 4) \times \antilog\sqrt{4} + 4$ Steve Wilson, 5/24Lawrence, KS 2380 (3.8) $(4! - \sqrt{4\%}) \times \dfrac{4}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2381 (5.8) $4! \times \antilog\sqrt{4} - \coth\ln\sqrt{\dfrac{.\overline{4}}{.4}}$ Steve Wilson, 5/24Lawrence, KS 2382 (5.4) $4! \times \antilog\sqrt{4} - \dfrac{4!}{\csch\ln\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2383 (5.4) $4! \times \antilog\sqrt{4} - \cosh\left(4 \times \arcosh\sqrt{\sqrt{4}}\right)$ Steve Wilson, 5/24Lawrence, KS 2384 (4.6) $4! \times \antilog\sqrt{4} - 4 \times 4$ Steve Wilson, 5/24Lawrence, KS 2385 (5.2) $4! \times \antilog\sqrt{4} - \dfrac{\arcsec\sqrt{4}}{4^\circ}$ Steve Wilson, 5/24Lawrence, KS 2386 (5.0) $4! \times \antilog\sqrt{4} - (\antilog 4)\pm - 4$ Steve Wilson, 5/24Lawrence, KS 2387 (5.6) $4! \times \antilog\sqrt{4} - \coth\ln\coth\arsinh\sqrt{4} - 4$ Steve Wilson, 5/24Lawrence, KS 2388 (5.0) $4! \times \antilog\sqrt{4} - \dfrac{4!}{\sqrt{4}}$ Steve Wilson, 5/24Lawrence, KS 2389 (5.4) $4! \times \antilog\sqrt{4} - \ln\sqrt{\sqrt{\exp 44}}$ Steve Wilson, 5/24Lawrence, KS 2390 (3.6) $\dfrac{4 \times 4! - .4}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2391 (5.0) $4! \times \antilog\sqrt{4} - \dfrac{4}{.\overline{4}}$ Steve Wilson, 5/24Lawrence, KS 2392 (4.6) $4! \times \antilog\sqrt{4} - 4 - 4$ Steve Wilson, 5/24Lawrence, KS 2393 (5.4) $4! \times \antilog\sqrt{4} - \cosh(\sqrt{4} \times \arcosh\sqrt{4})$ Steve Wilson, 5/24Lawrence, KS 2394 (3.8) $\dfrac{4 \times 4! - 4!\%}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2395 (3.8) $\dfrac{4 \times 4! - \sqrt{4\%}}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2396 (3.4) $\dfrac{4 \times 4!}{4\%} - 4$ Steve Wilson, 5/24Lawrence, KS 2397 (5.0) $4! \times \antilog\sqrt{4} - \log\left(\dfrac{4}{4\pmf}\right)$ Steve Wilson, 6/24Lawrence, KS 2398 (3.6) $\dfrac{4 \times 4!}{4\%} - \sqrt{4}$ Steve Wilson, 5/24Lawrence, KS 2399 (3.6) $\dfrac{4 \times 4! - 4\%}{4\%}$ Steve Wilson, 5/24Lawrence, KS 2400 (2.4) $\dfrac{\dfrac{4}{4\%} - 4}{4\%}$ Steve Wilson, 5/24Lawrence, KS