Integermania!

Jan Hus

Jan Hus was a church reformer who lived and worked in Prague, but was executed on 6 July 1415 by the church authorities because of his teachings. If we write this date in European format, ignoring the century, we have the date 6.7.15. Using one copy each of the digits 1, 5, 6, and 7, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400).

  1 (1.0)
$\dfrac{7 + 5}{6} - 1$
Steve Wilson, 9/17
Lawrence, KS
2 (1.0)
$\dfrac{7 + 5}{6} \times 1$
Dana Reigle, 9/17
Prague, Czechia
3 (1.0)
$5 + 6 - 7 - 1$
Dana Reigle, 9/17
Prague, Czechia
4 (1.0)
$5 \times 1 + 6 - 7$
Dana Reigle, 9/17
Prague, Czechia
5 (1.0)
$(7 - 6) \times 1 \times 5$
Ralph Jeffords, 9/17
Centerville, VA
6 (1.0)
$6 \times (7 - 5 - 1)$
Ralph Jeffords, 9/17
Centerville, VA
7 (1.0)
$6 - 5 - 1 + 7$
Dana Reigle, 9/17
Prague, Czechia
8 (1.0)
$1 \times 6 + 7 - 5$
Kenneth Chapman, 10/17
Santa Paula, CA
9 (1.0)
$1 + 6 + 7 - 5$
Kenneth Chapman, 10/17
Santa Paula, CA
10 (1.0)
$(7 - 5) \times (6 - 1)$
Dana Reigle, 9/17
Prague, Czechia
  11 (1.0)
$6 \times (7 - 5) - 1$
Ralph Jeffords, 10/17
Centerville, VA
12 (1.0)
$6 \times (7 \times 1 - 5)$
Kenneth Chapman, 10/17
Santa Paula, CA
13 (1.0)
$6 \times (7 - 5) + 1$
Ralph Jeffords, 10/17
Centerville, VA
14 (1.0)
$(1 + 6) \times (7 - 5)$
Kenneth Chapman, 10/17
Santa Paula, CA
15 (1.0)
$\dfrac{6}{ \dfrac75 - 1}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
16 (2.0)
$17 - 6 + 5$
Ralph Jeffords, 10/17
Centerville, VA
17 (1.0)
$5 + 6 + 7 - 1$
Kenneth Chapman, 10/17
Santa Paula, CA
18 (1.0)
$7 \times 1 + 5 + 6$
Dana Reigle, 10/17
Prague, Czechia
19 (1.0)
$1 + 5 + 6 + 7$
Jared Chumbley, 9/17
Prague, Czechia
20 (2.2)
$\dfrac{7 + 5}{.6 \times 1}$
Ralph Jeffords, 10/17
Centerville, VA
 
  21 (2.2)
$7 \times 6 \times 1 \times .5$
Dana Reigle, 11/17
Prague, Czechia
22 (1.0)
$5 \times 6 - 7 - 1$
Jared Chumbley, 9/17
Prague, Czechia
23 (1.0)
$1 \times 5 \times 6 - 7$
Kenneth Chapman, 11/17
Santa Paula, CA
24 (1.0)
$6 \times 5 - 7 + 1$
Dana Reigle, 10/17
Prague, Czechia
25 (2.0)
$76 - 51$
Dana Reigle, 11/17
Prague, Czechia
26 (2.0)
$61 - 7 \times 5$
Ralph Jeffords, 11/17
Centerville, VA
27 (2.4)
$51 \times .\overline{6} - 7$
Ralph Jeffords, 11/17
Centerville, VA
28 (1.0)
$5 \times 7 - 6 - 1$
Jared Chumbley, 9/17
Prague, Czechia
29 (1.0)
$(1 + 5) \times 6 - 7$
Kenneth Chapman, 11/17
Santa Paula, CA
30 (1.0)
$5 \times 7 + 1 - 6$
Kenneth Chapman, 11/17
Santa Paula, CA
  31 (1.0)
$(5 - 1) \times 6 + 7$
Ralph Jeffords, 11/17
Centerville, VA
32 (1.0)
$5 \times (6 - 1) + 7$
Paolo Pellegrini, 1/18
Martina Franca, Italy
33 (2.2)
$(67 - 1) \times .5$
Dana Reigle, 11/17
Prague, Czechia
34 (1.0)
$(1 + 7) \times 5 - 6$
Kenneth Chapman, 11/17
Santa Paula, CA
35 (1.0)
$\dfrac{7}{ \dfrac65 - 1}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
36 (1.0)
$6 \times 5 - 1 + 7$
Dana Reigle, 10/17
Prague, Czechia
37 (1.0)
$1 \times 5 \times 6 + 7$
Kenneth Chapman, 11/17
Santa Paula, CA
38 (1.0)
$6 \times 5 + 1 + 7$
Dana Reigle, 10/17
Prague, Czechia
39 (2.0)
$56 - 17$
Ralph Jeffords, 11/17
Centerville, VA
40 (1.0)
$7 \times 5 + 6 - 1$
Dana Reigle, 11/17
Prague, Czechia
  41 (1.0)
$7 \times 5 + 6 \times 1$
Ralph Jeffords, 11/17
Centerville, VA
42 (1.0)
$5 \times 7 + 1 + 6$
Dana Reigle, 10/17
Prague, Czechia
43 (1.0)
$6 \times (5 + 1) + 7$
Ralph Jeffords, 12/17
Centerville, VA
44 (1.0)
$7 \times (6 + 1) - 5$
Ralph Jeffords, 1/18
Centerville, VA
45 (2.4)
$5 \times \dfrac{7-6}{.\overline{1}}$
Ralph Jeffords, 12/17
Centerville, VA
46 (1.0)
$(7 + 1) \times 5 + 6$
Ralph Jeffords, 12/17
Centerville, VA
47 (1.0)
$7 \times 6 \times 1 + 5$
Dana Reigle, 12/17
Prague, Czechia
48 (1.0)
$7 \times 6 + 5 + 1$
Dana Reigle, 12/17
Prague, Czechia
49 (2.2)
$\dfrac{5}{.1} + 6 - 7$
Ralph Jeffords, 1/18
Centerville, VA
50 (2.2)
$(6 + 1) \times \dfrac{5}{.7}$
Dana Reigle, 12/17
Prague, Czechia
  51 (2.0)
$51 \times (7 - 6)$
Ralph Jeffords, 1/18
Centerville, VA
52 (1.0)
$(7 + 6) \times (5 - 1)$
Dana Reigle, 12/17
Prague, Czechia
53 (1.0)
$(7 + 1) \times 6 + 5$
Dana Reigle, 12/17
Prague, Czechia
54 (1.0)
$7 \times (6 + 1) + 5$
Ralph Jeffords, 1/18
Centerville, VA
55 (2.0)
$5 \times (17 - 6)$
Ralph Jeffords, 1/18
Centerville, VA
56 (2.0)
$7 \times 5 \times 1.6$
Dana Reigle, 1/18
Prague, Czechia
      60 (1.0)
$(7 + 6 - 1) \times 5$
Dana Reigle, 1/18
Prague, Czechia
  61 (2.0)
$76 - 15$
Ruth Turnau, 11/17
Prague, Czechia
    64 (1.0)
$(7 + 6) \times 5 - 1$
Ruth Turnau, 11/17
Prague, Czechia
65 (1.0)
$(7 + 6) \times 5 \times 1$
Dana Reigle, 1/18
Prague, Czechia
66 (1.0)
$(7 + 6) \times 5 + 1$
Ruth Turnau, 11/17
Prague, Czechia
      70 (1.0)
$(5 + 6 - 1) \times 7$
Dana Reigle, 1/18
Prague, Czechia
  71 (1.0)
$(7 + 5) \times 6 - 1$
Dana Reigle, 1/18
Prague, Czechia
  73 (2.0)
$61 + 7 + 5$
Ruth Turnau, 11/17
Prague, Czechia
             
      123 (2.8)
$\dfrac{6.\overline{1}}{5\%} + .\overline{7}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
             

Page 1 (1-400).