\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\antilog}{antilog} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \)

Integermania!

Letters of JCCC

The initials of Johnson County Community College are JCCC. Let us suppose that C=3 and J=10. (C is the third letter of the alphabet, and J is the tenth.) Create each of the positive integers using one copy of 10, three copies of 3, and any standard mathematical operations. All four numbers must be used, but no others. Also, the 10 may not be broken up. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).

  801 (3.6)
$(3!)! + \dfrac{\sqrt{3^{10}}}{3}$
Steve Wilson, 9/09
Raytown, MO
802 (4.8)
$\dfrac{10}{(\coth\ln 3)\%} + \dfrac{3!}{3}$
Steve Wilson, 5/25
Lawrence, KS
803 (3.6)
$\dfrac{(10-3!)!}{3\%} + 3$
Steve Wilson, 11/07
Raytown, MO
804 (3.6)
$\dfrac{\sqrt{3^{10}}}{.3} - 3!$
Steve Wilson, 9/09
Raytown, MO
805 (5.2)
$\dfrac{10}{(\coth\ln 3)\%} + \dfrac{.3}{3!\%}$
Steve Wilson, 5/25
Lawrence, KS
806 (3.8)
$\dfrac{(10-3!)!}{3\%} + 3!$
Steve Wilson, 11/07
Raytown, MO
807 (3.4)
$\dfrac{\sqrt{3^{10}}}{.3} - 3$
Steve Wilson, 9/09
Raytown, MO
808 (4.8)
$\dfrac{10 + \dfrac{.3}{3}}{(\coth\ln 3)\%}$
Steve Wilson, 5/25
Lawrence, KS
809 (4.6)
$\dfrac{10}{(\coth\ln 3)\%} + 3 \times 3$
Steve Wilson, 5/25
Lawrence, KS
810 (3.0)
$10 \times 3 \times 3^3$
Katie Cooper, 8/04
Stilwell, KS
  811 (5.0)
$\dfrac{\antilog 3}{\coth\ln 3} + 10$
$\phantom. + (\antilog 3)\pm$

Steve Wilson, 5/25
Lawrence, KS
812 (5.0)
$\dfrac{10}{(\coth\ln 3)\%} + 3! + 3!$
Steve Wilson, 5/25
Lawrence, KS
813 (3.4)
$\dfrac{\sqrt{3^{10}}}{.3} + 3$
Steve Wilson, 9/09
Raytown, MO
814 (5.4)
$\dfrac{10}{(\coth\ln 3)\%} - 3$
$\phantom. + \coth\ln\coth\arcosh 3$

Steve Wilson, 5/25
Lawrence, KS
815 (5.2)
$\dfrac{\antilog 3}{\coth\ln 3}$
$\phantom. + 3 \times \ln\sqrt{\exp 10}$

Steve Wilson, 5/25
Lawrence, KS
816 (3.6)
$\dfrac{\sqrt{3^{10}}}{.3} + 3!$
Steve Wilson, 9/09
Raytown, MO
817 (5.6)
$\dfrac{(\sec\arctan\sqrt{3})^3}{10\pmf}$
$\phantom. + \coth\ln\coth\arcosh 3$

Steve Wilson, 5/25
Lawrence, KS
818 (4.8)
$\dfrac{10}{(\coth\ln 3)\%} + 3 \times 3!$
Steve Wilson, 5/25
Lawrence, KS
819 (5.6)
$\dfrac{(\sec\arctan\sqrt{3})^3}{10\pmf}$
$\phantom. + \coth\ln\coth\arsinh 3$

Steve Wilson, 5/25
Lawrence, KS
820 (3.4)
$\dfrac{\sqrt{3^{10}} + 3}{.3}$
Steve Wilson, 9/09
Raytown, MO
  821 (5.0)
$\cot\arctan((\coth\ln 3)\pm)$
$\phantom. + 3 \times (10 - 3)$

Steve Wilson, 5/25
Lawrence, KS
822 (5.0)
$\sinh(3 \times \arsinh(3!))$
$\phantom. - \dfrac{3!}{10\%}$

Steve Wilson, 5/25
Lawrence, KS
823 (5.6)
$\dfrac{10}{(\coth\ln 3)\%} + 3!$
$\phantom. + \coth\ln\coth\arcosh 3$

Steve Wilson, 5/25
Lawrence, KS
824 (5.0)
$\dfrac{\antilog 3}{\coth\ln 3} + (10 - 3!)!$
Steve Wilson, 5/25
Lawrence, KS
825 (5.2)
$\dfrac{3}{.\overline{3}\%} - \dfrac{\csch\ln 3}{10\pmf}$
Steve Wilson, 5/25
Lawrence, KS
826 (5.2)
$\dfrac{10}{(\coth\ln 3)\%}$
$\phantom. + \cosh(3 \times \arsinh\sqrt{3})$

Steve Wilson, 5/25
Lawrence, KS
827 (4.6)
$\dfrac{10}{(\coth\ln 3)\%} + 3^3$
Steve Wilson, 5/25
Lawrence, KS
828 (4.0)
$\dfrac{3}{.\overline{3}\%} - \dfrac{(3!)!}{10}$
Steve Wilson, 5/25
Lawrence, KS
829 (5.4)
$\dfrac{3}{.\overline{3}\%}$
$\phantom. -\sec\arctan\sqrt{(10 - 3)!}$

Steve Wilson, 5/25
Lawrence, KS
830 (3.6)
$\dfrac{\sqrt{3^{10}} + 3!}{.3}$
Steve Wilson, 10/07
Raytown, MO
  831 (5.2)
$\cosh(3 \times \arcosh(3!))$
$\phantom. - 10 \times \ln\sqrt{\exp 3}$

Steve Wilson, 5/25
Lawrence, KS
832 (5.2)
$\dfrac{(103 + (\antilog 3)\pm)\%\phantom8}{(\coth\ln 3)\pmf}$
Steve Wilson, 5/25
Lawrence, KS
833 (4.6)
$\dfrac{10}{(\coth\ln 3)\%} + 33$
Steve Wilson, 5/25
Lawrence, KS
834 (3.6)
$\dfrac{(10-3)!}{3!} - 3!$
Steve Wilson, 11/07
Raytown, MO
835 (5.0)
$\cosh(3 \times \arcosh(3!))$
$\phantom. - 10 - (\antilog 3)\pm$

Steve Wilson, 5/25
Lawrence, KS
836 (4.4)
$\cosh(3 \times \arcosh(3 + 3))$
$\phantom. - 10$

Steve Wilson, 5/25
Lawrence, KS
837 (3.4)
$\dfrac{(10-3)!}{3!} - 3$
Steve Wilson, 11/07
Raytown, MO
838 (5.2)
$\cosh(3 \times \arcosh(3!))$
$\phantom. - \ln\sqrt{\exp 10} - 3$

Steve Wilson, 5/25
Lawrence, KS
839 (3.6)
$\dfrac{(10-3)! - 3!}{3!}$
Steve Wilson, 11/07
Raytown, MO
840 (3.2)
$\dfrac{(10-3)!}{3+3}$
Steve Wilson, 11/07
Raytown, MO
  841 (3.6)
$\dfrac{(10-3)! + 3!}{3!}$
Steve Wilson, 11/07
Raytown, MO
842 (4.8)
$\cosh(3 \times \arcosh(3!))$
$\phantom. - 3 - \log 10$

Steve Wilson, 5/25
Lawrence, KS
843 (3.4)
$\dfrac{(10-3)!}{3!} + 3$
Steve Wilson, 11/07
Raytown, MO
844 (4.8)
$\cosh(3 \times \arcosh(3!))$
$\phantom. - 3 + \log 10$

Steve Wilson, 5/25
Lawrence, KS
845 (4.6)
$\cosh(3 \times \arcosh(3 + 3))$
$\phantom. - \log 10$

Steve Wilson, 5/25
Lawrence, KS
846 (3.6)
$\dfrac{(10-3)!}{3!} + 3!$
Steve Wilson, 11/07
Raytown, MO
847 (4.6)
$\cosh(3 \times \arcosh(3 + 3))$
$\phantom. + \log 10$

Steve Wilson, 5/25
Lawrence, KS
848 (4.8)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 3 - \log 10$

Steve Wilson, 5/25
Lawrence, KS
849 (4.8)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 3 \times \log 10$

Steve Wilson, 5/25
Lawrence, KS
850 (4.8)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 10 - 3!$

Steve Wilson, 5/25
Lawrence, KS
  851 (5.0)
$\cosh(3 \times \arcosh(3 + 3))$
$\phantom. + \ln\sqrt{\exp 10}$

Steve Wilson, 5/25
Lawrence, KS
852 (4.0)
$\dfrac{3 - (10 + 3!)\%}{.\overline{3}\%}$
Steve Wilson, 5/25
Lawrence, KS
853 (4.6)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 10 - 3$

Steve Wilson, 5/25
Lawrence, KS
854 (5.2)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + \ln\sqrt{\exp 10} + 3$

Steve Wilson, 5/25
Lawrence, KS
855 (5.0)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 10 - (\antilog 3)\pm$

Steve Wilson, 5/25
Lawrence, KS
856 (4.4)
$\cosh(3 \times \arcosh(3 + 3))$
$\phantom. + 10$

Steve Wilson, 5/25
Lawrence, KS
857 (5.0)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 10 + (\antilog 3)\pm$

Steve Wilson, 5/25
Lawrence, KS
858 (5.0)
$\sinh(3 \times \arsinh(3!))$
$\phantom. - (10 - 3!)!$

Steve Wilson, 5/25
Lawrence, KS
859 (4.6)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 10 + 3$

Steve Wilson, 5/25
Lawrence, KS
860 (5.4)
$(3!^3 - (\antilog 3)\pm)$
$\phantom. \times (-\log(10\%\pm))$

Steve Wilson, 5/25
Lawrence, KS
  861 (3.8)
$\dfrac{3 - (10 + 3)\%}{.\overline{3}\%}$
Steve Wilson, 5/25
Lawrence, KS
862 (4.8)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 10 + 3!$

Steve Wilson, 5/25
Lawrence, KS
863 (5.6)
$\antilog 3 - (3! - \log 10)!$
$\phantom. - \coth\ln\coth\arcosh 3$

Steve Wilson, 5/25
Lawrence, KS
864 (3.4)
$3!^3 \times (10 - 3!)$
Steve Wilson, 10/07
Raytown, MO
865 (5.8)
$(\coth\ln\coth\arcosh 3 + .3)$
$\phantom. \times \dfrac{\ln\sqrt{\exp\antilog 3}}{10}$

Steve Wilson, 5/25
Lawrence, KS
866 (4.8)
$\sinh(3 \times \arsinh(3!))$
$\phantom. - 10 - 3!$

Steve Wilson, 5/25
Lawrence, KS
867 (2.8)
$\dfrac{3 - 10\%}{.\overline{3}\%} - 3$
Steve Wilson, 5/25
Lawrence, KS
868 (5.4)
$(3!^3 + (\antilog 3)\pm)$
$\phantom. \times (-\log(10\%\pm))$

Steve Wilson, 5/25
Lawrence, KS
869 (4.6)
$\sinh(3 \times \arsinh(3!))$
$\phantom. - 10 - 3$

Steve Wilson, 5/25
Lawrence, KS
870 (2.6)
$\dfrac{3}{.\overline{3}\%} - 3 \times 10$
Steve Wilson, 10/07
Raytown, MO
  871 (5.0)
$\sinh(3 \times \arsinh(3!))$
$\phantom. - 10 - (\antilog 3)\pm$

Steve Wilson, 5/25
Lawrence, KS
872 (4.4)
$\sinh(3 \times \arsinh(3 + 3))$
$\phantom. - 10$

Steve Wilson, 5/25
Lawrence, KS
873 (2.8)
$\dfrac{3 - 10\%}{.\overline{3}\%} + 3$
Steve Wilson, 5/25
Lawrence, KS
874 (5.0)
$\antilog 3 - 3!$
$\phantom. - (3! - \log 10)!$

Steve Wilson, 5/25
Lawrence, KS
875 (4.6)
$\sinh(3 \times \arsinh(3!))$
$\phantom. - 10 + 3$

Steve Wilson, 5/25
Lawrence, KS
876 (4.6)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 10 \times 3$

Steve Wilson, 5/25
Lawrence, KS
877 (4.8)
$\antilog 3 - 3$
$\phantom. - (3! - \log 10)!$

Steve Wilson, 5/25
Lawrence, KS
878 (4.8)
$\sinh(3 \times \arsinh(3!))$
$\phantom. - 10 + 3!$

Steve Wilson, 5/25
Lawrence, KS
879 (3.8)
$\dfrac{3 - (10 - 3)\%}{.\overline{3}\%}$
Steve Wilson, 5/25
Lawrence, KS
880 (3.8)
$10^3 - \left(\dfrac{.3}{3!\%}\right)!$
Steve Wilson, 5/25
Lawrence, KS
  881 (2.8)
$\dfrac{3 - 3\%}{.\overline{3}\%} - 10$
Steve Wilson, 5/25
Lawrence, KS
882 (4.6)
$\sinh(3 \times \arsinh(3 + 3))$
$\phantom. \times \log 10$

Steve Wilson, 5/25
Lawrence, KS
883 (4.6)
$\sinh(3 \times \arsinh(3 + 3))$
$\phantom. + \log 10$

Steve Wilson, 5/25
Lawrence, KS
884 (3.8)
$\dfrac{3}{.\overline{3}\%} - 10 - 3!$
Steve Wilson, 10/07
Raytown, MO
885 (4.8)
$\sinh(3 \times \arsinh(3!))$
$\phantom. + 3 \times \log 10$

Steve Wilson, 5/25
Lawrence, KS
886 (4.8)
$\sinh(3 \times \arsinh(3!))$
$\phantom. + 10 - 3!$

Steve Wilson, 5/25
Lawrence, KS
887 (2.6)
$\dfrac{3}{.\overline{3}\%} - 3 - 10$
Steve Wilson, 10/07
Raytown, MO
888 (4.0)
$\dfrac{3 - (10 - 3!)\%}{.\overline{3}\%}$
Steve Wilson, 5/25
Lawrence, KS
889 (4.6)
$\sinh(3 \times \arsinh(3!))$
$\phantom. + 10 - 3$

Steve Wilson, 5/25
Lawrence, KS
890 (2.6)
$\dfrac{3}{.\overline{33}\%} - 10$
Steve Wilson, 10/07
Raytown, MO
  891 (2.8)
$\dfrac{3 - \dfrac{.3}{10}}{.\overline{3}\%}$
Steve Wilson, 5/25
Lawrence, KS
892 (4.4)
$\sinh(3 \times \arsinh(3 + 3))$
$\phantom. + 10$

Steve Wilson, 5/25
Lawrence, KS
893 (2.6)
$\dfrac{3}{.\overline{3}\%} + 3 - 10$
Steve Wilson, 10/07
Raytown, MO
894 (3.4)
$\dfrac{3 \times 3}{10\pmf} - 3!$
Steve Wilson, 5/25
Lawrence, KS
895 (4.6)
$\sinh(3 \times \arsinh(3!))$
$\phantom. + 10 + 3$

Steve Wilson, 5/25
Lawrence, KS
896 (3.8)
$\dfrac{3}{.\overline{3}\%} - 10 + 3!$
Steve Wilson, 10/07
Raytown, MO
897 (2.4)
$\dfrac{3}{.3\%} - 103$
Steve Wilson, 10/07
Raytown, MO
898 (4.8)
$\dfrac{3}{.\overline{3}\%} - 3 + \log 10$
Steve Wilson, 5/25
Lawrence, KS
899 (2.8)
$\dfrac{3 + 3\%}{.\overline{3}\%} - 10$
Steve Wilson, 5/25
Lawrence, KS
900 (2.4)
$(3 - .3) \times \dfrac{10}{3\%}$
Steve Wilson, 11/07
Raytown, MO
  901 (2.8)
$\dfrac{3 - 3\%}{.\overline{3}\%} + 10$
Steve Wilson, 5/25
Lawrence, KS
902 (4.8)
$\dfrac{3}{.\overline{3}\%} + 3 - \log 10$
Steve Wilson, 5/25
Lawrence, KS
903 (2.8)
$\dfrac{3}{.\overline{3}\%} + .3 \times 10$
Steve Wilson, 10/07
Raytown, MO
904 (3.8)
$\dfrac{3}{.\overline{3}\%} + 10 - 3!$
Steve Wilson, 10/07
Raytown, MO
905 (4.8)
$\dfrac{3^3}{3\%} + \ln\sqrt{\exp 10}$
Steve Wilson, 5/25
Lawrence, KS
906 (3.4)
$\dfrac{3 \times 3}{10\pmf} + 3!$
Steve Wilson, 5/25
Lawrence, KS
907 (2.6)
$\dfrac{3}{.\overline{3}\%} - 3 + 10$
Steve Wilson, 10/07
Raytown, MO
908 (5.2)
$\dfrac{3}{.\overline{3}\%} + \ln\sqrt{\exp 10} + 3$
Steve Wilson, 5/25
Lawrence, KS
909 (2.8)
$\dfrac{3 + \dfrac{.3}{10}}{.\overline{3}\%}$
Steve Wilson, 5/25
Lawrence, KS
910 (2.6)
$\dfrac{3}{.\overline{33}\%} + 10$
Steve Wilson, 10/07
Raytown, MO
  911 (5.0)
$\dfrac{3}{.\overline{3}\%} + 10 + (\antilog 3)\pm$
Steve Wilson, 5/25
Lawrence, KS
912 (3.2)
$(310 - 3!) \times 3$
Steve Wilson, 10/07
Raytown, MO
913 (2.6)
$\dfrac{3}{.\overline{3}\%} + 3 + 10$
Steve Wilson, 10/07
Raytown, MO
914 (5.2)
$\antilog 3 - 3!$
$\phantom. - \dfrac{10\%}{(\coth\ln 3)\pm}$

Steve Wilson, 5/25
Lawrence, KS
915 (5.2)
$(3 \times 3)!! - 10 \times 3$
Steve Wilson, 5/25
Lawrence, KS
916 (3.8)
$\dfrac{3}{.\overline{3}\%} + 10 + 3!$
Steve Wilson, 10/07
Raytown, MO
917 (5.0)
$\antilog 3 - 3$
$\phantom. - \dfrac{10\%}{(\coth\ln 3)\pm}$

Steve Wilson, 5/25
Lawrence, KS
918 (5.6)
$(10 - (\antilog 3)\pm)!! - 3^3$
Steve Wilson, 5/25
Lawrence, KS
919 (2.8)
$\dfrac{3 + 3\%}{.\overline{3}\%} + 10$
Steve Wilson, 5/25
Lawrence, KS
920 (3.8)
$(3!)! + 10 \times \dfrac{3!}{.3}$
Steve Wilson, 10/07
Raytown, MO
  921 (2.0)
$(310 - 3) \times 3$
Steve Wilson, 5/06
Raytown, MO
922 (4.4)
$\antilog 3 - 3! \times (10 + 3)$
Steve Wilson, 5/25
Lawrence, KS
923 (4.8)
$\dfrac{10 + 3}{\tanh\ln\coth\arcosh(3 + 3)}$
Steve Wilson, 5/25
Lawrence, KS
924 (3.2)
$310 \times 3 - 3!$
Steve Wilson, 10/07
Raytown, MO
925 (5.4)
$(3 \times 3)!! - \Gamma(3) \times 10$
Steve Wilson, 5/25
Lawrence, KS
926 (5.2)
$\antilog 3 + 3!$
$\phantom. - \dfrac{10\%}{(\coth\ln 3)\pm}$

Steve Wilson, 5/25
Lawrence, KS
927 (2.0)
$103 \times 3 \times 3$
Desteni Starin, 5/06
Overland Park, KS
928 (5.8)
$(3 \times 3)!! - (3!)!!! + \log 10$
Steve Wilson, 5/25
Lawrence, KS
929 (5.4)
$(3 \times 3)!! - 10 - 3!$
Steve Wilson, 5/25
Lawrence, KS
930 (2.6)
$\dfrac{3}{.\overline{3}\%} + 3 \times 10$
Steve Wilson, 10/07
Raytown, MO
  931 (5.6)
$\coth\ln\coth\arcosh(10 - 3!)$
$\phantom. + \dfrac{3}{.\overline{3}\%}$

Steve Wilson, 5/25
Lawrence, KS
932 (5.2)
$(3 \times 3)!! - 10 - 3$
Steve Wilson, 5/25
Lawrence, KS
933 (2.0)
$310 \times 3 + 3$
Steve Wilson, 5/06
Raytown, MO
934 (4.6)
$\antilog 3 - 3! \times 10 - 3!$
Steve Wilson, 5/25
Lawrence, KS
935 (5.2)
$(3 + 3 + 3)!! - 10$
Steve Wilson, 5/25
Lawrence, KS
936 (3.2)
$310 \times 3 + 3!$
Steve Wilson, 10/07
Raytown, MO
937 (4.4)
$\antilog 3 - 3! \times 10 - 3$
Steve Wilson, 5/25
Lawrence, KS
938 (5.2)
$(3 \times 3)!! - 10 + 3$
Steve Wilson, 5/25
Lawrence, KS
939 (2.0)
$(310 + 3) \times 3$
Steve Wilson, 5/06
Raytown, MO
940 (3.4)
$\dfrac{3}{3 ‰} - 3! \times 10$
Steve Wilson, 4/08
Raytown, MO
  941 (5.4)
$(3 \times 3)!! - 10 + 3!$
Steve Wilson, 5/25
Lawrence, KS
942 (5.0)
$\sinh(3 \times \arsinh(3!))$
$\phantom. + \dfrac{3!}{10\%}$

Steve Wilson, 5/25
Lawrence, KS
943 (4.4)
$\antilog 3 - 3! \times 10 + 3$
Steve Wilson, 5/25
Lawrence, KS
944 (5.4)
$\antilog 3 - \dfrac{3}{3!\%}$
$\phantom. + \log(10\%\%\pm)$

Steve Wilson, 5/25
Lawrence, KS
945 (5.2)
$\antilog 3 - \dfrac{3}{3!\%}$
$\phantom. + \log(10\pmm)$

Steve Wilson, 5/25
Lawrence, KS
946 (4.6)
$\antilog 3 - 3! \times 10 + 3!$
Steve Wilson, 5/25
Lawrence, KS
947 (5.2)
$\antilog 3 - \dfrac{3}{3!\%}$
$\phantom. + \log(10\%\%)$

Steve Wilson, 5/25
Lawrence, KS
948 (3.2)
$(310 + 3!) \times 3$
Steve Wilson, 10/07
Raytown, MO
949 (4.6)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 103$

Steve Wilson, 5/25
Lawrence, KS
950 (3.4)
$10^3 - \dfrac{3}{3!\%}$
Steve Wilson, 10/07
Raytown, MO
  951 (4.8)
$\antilog 3 - \dfrac{3}{3!\%} + \log 10$
Steve Wilson, 5/25
Lawrence, KS
952 (4.4)
$\antilog 3 - 3 \times (10 + 3!)$
Steve Wilson, 5/25
Lawrence, KS
953 (5.2)
$\antilog 3 - \dfrac{3}{3!\%}$
$\phantom. - \log(10\%\%)$

Steve Wilson, 5/25
Lawrence, KS
954 (5.2)
$\antilog 3 - \dfrac{3}{3!\%}$
$\phantom. - \log(10\%\pm)$

Steve Wilson, 5/25
Lawrence, KS
955 (5.2)
$(3 + 3 + 3)!! + 10$
Steve Wilson, 5/25
Lawrence, KS
956 (5.4)
$\antilog 3 - \dfrac{3}{3!\%}$
$\phantom. - \log(10\%\%\pm)$

Steve Wilson, 5/25
Lawrence, KS
957 (4.2)
$\dfrac{(3!)!\%}{3!\pmf} - \sqrt{3^{10}}$
Steve Wilson, 5/25
Lawrence, KS
958 (4.4)
$\antilog 3 - 3! \times (10 - 3)$
Steve Wilson, 5/25
Lawrence, KS
959 (5.2)
$\antilog 3 - 3! \times 3!$
$\phantom. - \ln\sqrt{\exp 10}$

Steve Wilson, 5/25
Lawrence, KS
960 (3.8)
$\dfrac{3}{.\overline{3}\%} + 3! \times 10$
Steve Wilson, 10/07
Raytown, MO
  961 (4.2)
$\antilog 3 - 3 \times (10 + 3)$
Steve Wilson, 5/25
Lawrence, KS
962 (4.8)
$\antilog 3 - 33$
$\phantom. - \ln\sqrt{\exp 10}$

Steve Wilson, 5/25
Lawrence, KS
963 (4.2)
$\antilog 3 - 3^3 - 10$
Steve Wilson, 5/25
Lawrence, KS
964 (3.4)
$10^3 - 3! \times 3!$
Harman Tiwana, 11/12
Lenexa, KS
965 (4.6)
$\antilog 3 - 33 + \log(10\pm)$
Steve Wilson, 5/25
Lawrence, KS
966 (4.4)
$\antilog 3 - 33 - \log 10$
Steve Wilson, 5/25
Lawrence, KS
967 (3.0)
$10^3 - 33$
Steve Wilson, 5/25
Lawrence, KS
968 (4.4)
$\antilog 3 - 33 + \log 10$
Steve Wilson, 5/25
Lawrence, KS
969 (4.6)
$\antilog 3 - 33 - \log(10\pm)$
Steve Wilson, 5/25
Lawrence, KS
970 (2.4)
$\dfrac{3}{.3\%} - 3 \times 10$
Steve Wilson, 10/07
Raytown, MO
  971 (4.6)
$\antilog 3 - 3^3 + \log(10\pm)$
Steve Wilson, 5/25
Lawrence, KS
972 (3.4)
$3^{3!} + \sqrt{3^{10}}$
Steve Wilson, 9/09
Raytown, MO
973 (3.0)
$10^3 - 3^3$
David Caton, 10/04
Shawnee, KS
974 (4.4)
$\antilog 3 - 3^3 + \log 10$
Steve Wilson, 5/25
Lawrence, KS
975 (4.6)
$\antilog 3 - 3^3 - \log(10\pm)$
Steve Wilson, 5/25
Lawrence, KS
976 (3.6)
$\dfrac{3}{3\pmf} - (10 - 3!)!$
Steve Wilson, 5/25
Lawrence, KS
977 (4.2)
$\antilog 3 - 33 + 10$
Steve Wilson, 5/25
Lawrence, KS
978 (4.6)
$\antilog 3 - 10 - 3! - 3!$
Steve Wilson, 5/25
Lawrence, KS
979 (4.2)
$\antilog 3 - 3 \times (10 - 3)$
Steve Wilson, 5/25
Lawrence, KS
980 (3.4)
$10^3 - \dfrac{3!}{.3}$
Steve Wilson, 10/07
Raytown, MO
  981 (4.2)
$\antilog 3 - 10 - 3 \times 3$
Steve Wilson, 5/25
Lawrence, KS
982 (3.2)
$10^3 - 3 \times 3!$
Steve Wilson, 5/25
Lawrence, KS
983 (4.2)
$\antilog 3 - 3^3 + 10$
Steve Wilson, 5/25
Lawrence, KS
984 (3.4)
$\dfrac{3}{3 ‰} - 3! - 10$
Steve Wilson, 4/08
Raytown, MO
985 (4.6)
$\sinh(3 \times \arsinh(3!))$
$\phantom. + 103$

Steve Wilson, 5/25
Lawrence, KS
986 (4.8)
$\antilog 3 - 3 \times 3$
$\phantom. - \ln\sqrt{\exp 10}$

Steve Wilson, 5/25
Lawrence, KS
987 (2.4)
$\dfrac{3}{.3\%} - 3 - 10$
Steve Wilson, 10/07
Raytown, MO
988 (3.4)
$10^3 - 3! - 3!$
Steve Wilson, 5/25
Lawrence, KS
989 (4.2)
$\antilog 3 - 10 - \dfrac33$
Steve Wilson, 5/25
Lawrence, KS
990 (2.0)
$33 \times 10 \times 3$
Joseph Mavungu, 4/03
Olathe, KS
  991 (3.0)
$10^3 - 3 \times 3$
Cate Henderson, 4/05
Merriam, KS
992 (4.4)
$\antilog 3 - 3 \times 3 + \log 10$
Steve Wilson, 5/25
Lawrence, KS
993 (2.2)
$3310 \times .3$
Steve Wilson, 7/06
Raytown, MO
994 (3.0)
$10^3 - 3 - 3$
Desteni Starin, 5/06
Overland Park, KS
995 (3.6)
$10^3 - \dfrac{.3}{3!\%}$
Steve Wilson, 10/07
Raytown, MO
996 (3.4)
$\dfrac{3}{3 ‰} + 3! - 10$
Steve Wilson, 4/08
Raytown, MO
997 (2.2)
$10 \times \dfrac{3}{3\%} - 3$
Steve Wilson, 11/07
Raytown, MO
998 (3.2)
$10^3 - \dfrac{3!}{3}$
Steve Wilson, 10/07
Raytown, MO
999 (3.0)
$10^3 - \dfrac33$
Jessica Moseley, 5/01
Baldwin, KS
1000 (3.0)
$10^3 \times \dfrac33$
Gustavo Martin del Campo, 4/01
Overland Park, KS
  1001 (3.0)
$10^3 + \dfrac33$
Steve Wilson, 10/07
Raytown, MO
1002 (3.2)
$10^3 + \dfrac{3!}{3}$
Steve Wilson, 10/07
Raytown, MO
1003 (2.2)
$10 \times \dfrac{3}{3\%} + 3$
Steve Wilson, 11/07
Raytown, MO
1004 (3.4)
$\dfrac{3}{3 ‰} - 3! + 10$
Steve Wilson, 4/08
Raytown, MO
1005 (3.6)
$10^3 + \dfrac{.3}{3!\%}$
Steve Wilson, 10/07
Raytown, MO
1006 (3.0)
$10^3 + 3 + 3$
Joseph Mavungu, 4/03
Olathe, KS
1007 (2.4)
$\dfrac{3}{.3\%} + 10 - 3$
Steve Wilson, 5/25
Lawrence, KS
1008 (4.4)
$\antilog 3 + 3 \times 3 - \log 10$
Steve Wilson, 5/25
Lawrence, KS
1009 (3.0)
$10^3 + 3 \times 3$
Adam Petrowsky, 2/03
Lenexa, KS
1010 (2.4)
$\dfrac{10 \times 3 + .3}{3\%}$
Steve Wilson, 11/07
Raytown, MO
  1011 (4.2)
$\antilog 3 + 10 + \dfrac33$
Steve Wilson, 5/25
Lawrence, KS
1012 (3.4)
$3^{10} + 3! + 3!$
Steve Wilson, 5/25
Lawrence, KS
1013 (2.4)
$\dfrac{3}{.3\%} + 3 + 10$
Steve Wilson, 11/07
Raytown, MO
1014 (4.8)
$\antilog 3 + 3 \times 3$
$\phantom. + \ln\sqrt{\exp 10}$

Steve Wilson, 5/25
Lawrence, KS
1015 (4.6)
$3 \times (3! - \log 10)$
$\phantom. + \antilog 3$

Steve Wilson, 5/25
Lawrence, KS
1016 (3.4)
$\dfrac{3}{3 ‰} + 3! + 10$
Steve Wilson, 4/08
Raytown, MO
1017 (4.2)
$\antilog 3 + 3^3 - 10$
Steve Wilson, 5/25
Lawrence, KS
1018 (3.2)
$3^{10} + 3 \times 3!$
Steve Wilson, 5/25
Lawrence, KS
1019 (4.2)
$\antilog 3 + 10 + 3 \times 3$
Steve Wilson, 5/25
Lawrence, KS
1020 (3.4)
$10^3 + \dfrac{3!}{.3}$
Steve Wilson, 5/25
Lawrence, KS
  1021 (4.2)
$\antilog 3 + 3 \times (10 - 3)$
Steve Wilson, 5/25
Lawrence, KS
1022 (4.6)
$\antilog 3 + 10 + 3! + 3!$
Steve Wilson, 5/25
Lawrence, KS
1023 (2.0)
$310 \times 3.3$
Steve Wilson, 7/06
Raytown, MO
1024 (3.0)
$\left( \dfrac{3+3}{3} \right)^{10}$
Robert Reid, 7/04
London, England
1025 (4.6)
$\antilog 3 + 3^3 + \log(10\pm)$
Steve Wilson, 5/25
Lawrence, KS
1026 (4.4)
$\antilog 3 + 3^3 - \log 10$
Steve Wilson, 5/25
Lawrence, KS
1027 (3.0)
$10^3 + 3^3$
Cassie Weatherwax, 2/03
Lawrence, KS
1028 (4.4)
$\antilog 3 + 3^3 + \log 10$
Steve Wilson, 5/25
Lawrence, KS
1029 (4.6)
$\antilog 3 + 3^3 - \log(10\pm)$
Steve Wilson, 5/25
Lawrence, KS
1030 (2.0)
$1033 - 3$
Steve Wilson, 7/06
Raytown, MO
  1031 (4.6)
$\antilog 3 + 33 + \log(10\pm)$
Steve Wilson, 5/25
Lawrence, KS
1032 (4.4)
$\antilog 3 + 33 - \log 10$
Steve Wilson, 5/25
Lawrence, KS
1033 (3.0)
$10^3 + 33$
Nenita Gainer, 3/02
Olathe, KS
1034 (4.4)
$\antilog 3 + 33 + \log 10$
Steve Wilson, 5/25
Lawrence, KS
1035 (4.6)
$\antilog 3 + 33 - \log(10\pm)$
Steve Wilson, 5/25
Lawrence, KS
1036 (2.0)
$1033 + 3$
Joseph Mavungu, 4/03
Olathe, KS
1037 (4.2)
$\antilog 3 + 3^3 + 10$
Steve Wilson, 5/25
Lawrence, KS
1038 (4.8)
$\antilog 3 + 33$
$\phantom. + \ln\sqrt{\exp 10}$

Steve Wilson, 5/25
Lawrence, KS
1039 (4.2)
$\antilog 3 + 3 \times (10 + 3)$
Steve Wilson, 5/25
Lawrence, KS
1040 (4.2)
$\dfrac{3! + (10 - 3!)!\%}{3!\pmf}$
Steve Wilson, 5/25
Lawrence, KS
    1042 (4.4)
$\antilog 3 + 3! \times (10 - 3)$
Steve Wilson, 5/25
Lawrence, KS
1043 (4.2)
$\antilog 3 + 33 + 10$
Steve Wilson, 5/25
Lawrence, KS
        1048 (4.4)
$\antilog 3 + 3 \times (10 + 3!)$
Steve Wilson, 5/25
Lawrence, KS
1049 (4.8)
$\antilog 3 + \dfrac{3}{3!\%} - \log 10$
Steve Wilson, 5/25
Lawrence, KS
1050 (3.4)
$10^3 + \dfrac{3}{3!\%}$
Steve Wilson, 5/25
Lawrence, KS
  1051 (4.8)
$\antilog 3 + \dfrac{3}{3!\%} + \log 10$
Steve Wilson, 5/25
Lawrence, KS
    1054 (4.6)
$\antilog 3 + 3! \times 10 - 3!$
Steve Wilson, 5/25
Lawrence, KS
    1057 (4.4)
$\antilog 3 + 3! \times 10 - 3$
Steve Wilson, 5/25
Lawrence, KS
    1060 (3.4)
$\dfrac{3}{3\pmf} + 10 \times 3!$
Steve Wilson, 5/25
Lawrence, KS
      1063 (4.4)
$\antilog 3 + 3! \times 10 + 3$
Steve Wilson, 5/25
Lawrence, KS
    1066 (4.6)
$\antilog 3 + 3! \times 10 + 3!$
Steve Wilson, 5/25
Lawrence, KS
       
                1078 (4.4)
$\antilog 3 + 3! \times (10 + 3)$
Steve Wilson, 5/25
Lawrence, KS
  1080 (3.4)
$10 \times 3! \times 3! \times 3$
Steve Wilson, 5/25
Lawrence, KS
  1081 (4.4)
$\antilog 3 + \dfrac{\sqrt{3^{10}}}{3}$
Steve Wilson, 5/25
Lawrence, KS
              1089 (4.8)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + \sqrt{3^{10}}$

Steve Wilson, 5/25
Lawrence, KS
1090 (2.2)
$\dfrac{33}{3\%} - 10$
Steve Wilson, 11/07
Raytown, MO
            1096 (4.6)
$\antilog 3 + 3! \times (10 + 3!)$
Steve Wilson, 5/25
Lawrence, KS
1097 (4.4)
$\antilog 3 + 103 - 3!$
Steve Wilson, 5/25
Lawrence, KS
  1099 (4.4)
$\dfrac{33}{3\%} - \log 10$
Steve Wilson, 5/25
Lawrence, KS
1100 (2.2)
$\dfrac{10}{.3} \times 33$
Steve Wilson, 11/07
Raytown, MO
  1101 (4.4)
$\dfrac{33}{3\%} + \log 10$
Steve Wilson, 5/25
Lawrence, KS
  1103 (2.4)
$\dfrac{3}{.3\%} + 103$
Steve Wilson, 11/07
Raytown, MO
    1106 (4.2)
$\antilog 3 + 103 + 3$
Steve Wilson, 5/25
Lawrence, KS
    1109 (4.4)
$\antilog 3 + 103 + 3!$
Steve Wilson, 5/25
Lawrence, KS
1110 (2.2)
$\dfrac{33}{3\%} + 10$
Steve Wilson, 11/07
Raytown, MO
                    1120 (3.8)
$10^3 + \left(\dfrac{.3}{3!\%}\right)!$
Steve Wilson, 5/25
Lawrence, KS
          1125 (4.8)
$\sinh(3 \times \arsinh(3!))$
$\phantom. + \sqrt{3^{10}}$

Steve Wilson, 5/25
Lawrence, KS
         
                     
                     
            1156 (4.6)
$\cosh(3 \times \arcosh(3!))$
$\phantom. + 310$

Steve Wilson, 5/25
Lawrence, KS
       
                    1170 (3.8)
$\dfrac{3! + 3! - .3}{10\pmf}$
Steve Wilson, 5/25
Lawrence, KS
                     
        1184 (4.2)
$\dfrac{(3!)!\%}{3!\pmf} - 10 - 3!$
Steve Wilson, 5/25
Lawrence, KS
    1187 (4.0)
$\dfrac{(3!)!\%}{3!\pmf} - 10 - 3$
Steve Wilson, 5/25
Lawrence, KS
    1190 (3.6)
$\dfrac{3! \times 3!}{3\%} - 10$
Steve Wilson, 5/25
Lawrence, KS
    1192 (4.6)
$\sinh(3 \times \arsinh(3!))$
$\phantom. + 310$

Steve Wilson, 5/25
Lawrence, KS
1193 (4.0)
$\dfrac{(3!)!\%}{3!\pmf} - 10 + 3$
Steve Wilson, 5/25
Lawrence, KS
1194 (3.6)
$\dfrac{3! + 3!}{10\pmf} - 3!$
Steve Wilson, 5/25
Lawrence, KS
  1196 (4.2)
$\dfrac{(3!)!\%}{3!\pmf} - 10 + 3!$
Steve Wilson, 5/25
Lawrence, KS
1197 (3.6)
$\dfrac{3! + 3!}{10\pmf} - 3$
Steve Wilson, 5/25
Lawrence, KS
  1199 (4.8)
$\dfrac{3! \times 3!}{3\%} - \log 10$
Steve Wilson, 5/25
Lawrence, KS
1200 (2.8)
$\dfrac{3 \times .3 + .3}{10\%\%}$
Steve Wilson, 5/25
Lawrence, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).