$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

## Integermania!

#### Ralph's Birthyear

Integermaniac master Ralph Jeffords was born in 1948. Using one copy each of the digits 1, 4, 8, and 9, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).

 401 (2.2) $\dfrac{4}{1\%} + 9 - 8$ Steve Wilson, 5/15Lawrence, KS 402 (2.6) $\dfrac{4.1}{.\overline{9}\%} - 8$ Steve Wilson, 5/15Lawrence, KS 403 (3.4) $\dfrac{8 - 4}{1\%} + \sqrt{9}$ Steve Wilson, 5/15Lawrence, KS 404 (2.6) $\dfrac{8}{1.\overline{9}\%} + 4$ Steve Wilson, 5/15Lawrence, KS 405 (2.6) $81 \times (9 - 4)$ Steve Wilson, 5/15Lawrence, KS 406 (2.8) $\dfrac{9 \times .4}{.\overline{8}\%} + 1$ Steve Wilson, 6/15Lawrence, KS 407 (2.6) $\dfrac{4}{1\%} + 8 - .\overline{9}$ Steve Wilson, 6/15Lawrence, KS 408 (2.4) $\dfrac{4}{.1 - 9\%} + 8$ Steve Wilson, 6/15Lawrence, KS 409 (2.0) $418 - 9$ Steve Wilson, 6/15Lawrence, KS 410 (2.2) $\dfrac{4.1}{(9 - 8)\%}$ Steve Wilson, 8/12Raytown, MO 411 (2.0) $419 - 8$ Steve Wilson, 6/15Lawrence, KS 412 (3.4) $418 - (\sqrt{9})!$ Steve Wilson, 7/15Lawrence, KS 413 (3.8) $8!\% - \sqrt{4\%} + 9 + 1$ Steve Wilson, 4/22Lawrence, KS 414 (2.6) $\dfrac{1.8}{.\overline{4}\%} + 9$ Steve Wilson, 7/15Lawrence, KS 415 (3.2) $418 - \sqrt{9}$ Steve Wilson, 7/15Lawrence, KS 416 (2.8) $\dfrac{1.\overline{8}}{.\overline{4}\%} - 9$ Steve Wilson, 7/15Lawrence, KS 417 (2.2) $\dfrac{4}{1\%} + 8 + 9$ Steve Wilson, 8/15Lawrence, KS 418 (2.4) $418 \times .\overline{9}$ Steve Wilson, 8/15Lawrence, KS 419 (2.2) $418.\overline{9}$ Steve Wilson, 8/15Lawrence, KS 420 (2.2) $\dfrac{9 - 4.8}{1\%}$ Steve Wilson, 2/13Raytown, MO 421 (3.2) $418 + \sqrt{9}$ Steve Wilson, 9/15Lawrence, KS 422 (3.6) $\dfrac{4 + \sqrt{9\%}}{1\%} - 8$ Steve Wilson, 9/15Lawrence, KS 423 (2.0) $(48 - 1) \times 9$ Steve Wilson, 8/15Lawrence, KS 424 (2.2) $\dfrac{9 + 8}{4\%} - 1$ Steve Wilson, 8/15Lawrence, KS 425 (2.2) $(9 + 8) \times \dfrac{1}{4\%}$ Steve Wilson, 9/15Lawrence, KS 426 (2.2) $\dfrac{9 + 8}{4\%} + 1$ Steve Wilson, 8/15Lawrence, KS 427 (2.0) $418 + 9$ Steve Wilson, 8/15Lawrence, KS 428 (3.8) $\dfrac{ \dfrac{8!\%}{9} - \sqrt{4}}{.1}$ Steve Wilson, 5/22Lawrence, KS 429 (3.4) $4! \times 18 - \sqrt{9}$ Steve Wilson, 10/15Lawrence, KS 430 (2.6) $\dfrac{1 + 9 \times 8\%}{.4\%}$ Steve Wilson, 2/13Raytown, MO 431 (2.0) $48 \times 9 - 1$ Austin Timmons, 4/12Overland Park, KS 432 (2.0) $48 \times 9 \times 1$ Steve Wilson, 10/15Lawrence, KS 433 (2.0) $48 \times 9 + 1$ Nathan Fields, 4/12Overland Park, KS 434 (2.8) $\dfrac{1.\overline{8}}{.\overline{4}\%} + 9$ Steve Wilson, 10/15Lawrence, KS 435 (3.4) $4! \times 18 + \sqrt{9}$ Steve Wilson, 10/15Lawrence, KS 436 (2.4) $981 \times .\overline{4}$ Steve Wilson, 11/15Lawrence, KS 437 (4.0) $(8! - ((\sqrt{9})!)!)\% + 41$ Steve Wilson, 4/22Lawrence, KS 438 (3.6) $4! \times 18 + (\sqrt{9})!$ Steve Wilson, 11/15Lawrence, KS 439 (4.6) $\dfrac{8!\pmf}{9\%} - \sqrt{\sqrt{ (.\overline{1})^{-4}}}$ Steve Wilson, 4/23Lawrence, KS 440 (2.2) $\dfrac{9 \times 4 + 8}{.1}$ Steve Wilson, 2/13Raytown, MO 441 (2.0) $(48 + 1) \times 9$ Steve Wilson, 11/15Lawrence, KS 442 (2.6) $\dfrac{4}{.\overline{8}\%} - 9 + 1$ Steve Wilson, 11/15Lawrence, KS 443 (3.4) $\dfrac{9}{(\sqrt{4})\%} - 8 + 1$ Steve Wilson, 4/22Lawrence, KS 444 (3.4) $\dfrac{89}{\sqrt{4\%}} - 1$ Steve Wilson, 3/16Lawrence, KS 445 (2.0) $89 \times (4 + 1)$ Austin Timmons, 5/12Overland Park, KS 446 (2.2) $4 \times \left( \dfrac{9}{8\%} - 1 \right)$ Steve Wilson, 1/16Lawrence, KS 447 (3.4) $\dfrac{1.8}{4 ‰} - \sqrt{9}$ Steve Wilson, 3/16Lawrence, KS 448 (2.6) $\dfrac{9 - 4\%}{.1 - 8\%}$ Steve Wilson, 1/16Lawrence, KS 449 (2.2) $4 \times \dfrac{9}{8\%} - 1$ Steve Wilson, 1/16Lawrence, KS 450 (2.2) $\dfrac{4 \times 9}{8 \times 1\%}$ Katie Roberts, 7/12Washington, DC 451 (2.2) $4 \times \dfrac{9}{8\%} + 1$ Steve Wilson, 1/16Lawrence, KS 452 (2.6) $\dfrac{9 + 4\%}{.1 - 8\%}$ Steve Wilson, 1/16Lawrence, KS 453 (3.8) $\dfrac{4}{.\overline{8}\%} + 1 \times \sqrt{9}$ Steve Wilson, 4/16Lawrence, KS 454 (2.2) $\left( \dfrac{9}{8\%} + 1 \right) \times 4$ Steve Wilson, 2/16Lawrence, KS 455 (2.2) $9.1 \times \dfrac{4}{8\%}$ Steve Wilson, 2/16Lawrence, KS 456 (3.2) $(8 - 4)! \times 19$ Steve Wilson, 3/16Lawrence, KS 457 (3.4) $\dfrac{9}{(\sqrt{4})\%} + 8 - 1$ Steve Wilson, 4/22Lawrence, KS 458 (2.6) $\dfrac{4}{.\overline{8}\%} + 9 - 1$ Steve Wilson, 2/16Lawrence, KS 459 (2.2) $\left( \dfrac{4}{8\%} + 1 \right) \times 9$ Steve Wilson, 2/16Lawrence, KS 460 (2.6) $\dfrac{4}{.\overline{8}\%} + 9 + 1$ Steve Wilson, 2/13Raytown, MO 461 (4.8) $\dfrac{9}{(\sqrt{4})\%} + 8 - \log(1\pm)$ Steve Wilson, 4/23Lawrence, KS 462 (3.6) $8^{\sqrt{9}} - \dfrac{1}{(\sqrt{4})\%}$ Steve Wilson, 4/22Lawrence, KS 463 (3.4) $\dfrac{91}{\sqrt{4\%}} + 8$ Steve Wilson, 4/22Lawrence, KS 464 (2.4) $\left( \dfrac{1}{.8\%} - 9 \right) \times 4$ Steve Wilson, 2/16Lawrence, KS 465 (3.8) $\dfrac{8 + 1 + \sqrt{9\%}}{(\sqrt{4})\%}$ Steve Wilson, 4/23Lawrence, KS 466 (4.2) $\dfrac{8!\pmf}{9\%} + \dfrac{\sqrt{4}}{.\overline{1}}$ Steve Wilson, 4/23Lawrence, KS 467 (2.4) $\dfrac{19}{4\%} - 8$ Steve Wilson, 3/16Lawrence, KS 468 (3.4) $\dfrac{9}{(\sqrt{4})\%} + 18$ Steve Wilson, 4/22Lawrence, KS 469 (2.6) $\dfrac{4}{.\overline{8}\%} + 19$ Steve Wilson, 3/16Lawrence, KS 470 (2.2) $\dfrac{94}{1 - .8}$ Steve Wilson, 2/13Raytown, MO 471 (2.2) $\dfrac{4.8}{1\%} - 9$ Steve Wilson, 4/16Lawrence, KS 472 (2.0) $481 - 9$ Steve Wilson, 4/16Lawrence, KS 473 (2.4) $\dfrac{19 - 8\%}{4\%}$ Steve Wilson, 4/16Lawrence, KS 474 (3.6) $\dfrac{48}{.1} - (\sqrt{9})!$ Steve Wilson, 10/21Lawrence, KS 475 (2.2) $\dfrac{19}{(8 - 4)\%}$ Steve Wilson, 4/16Lawrence, KS 476 (3.4) $\dfrac{9}{1.8\%} - 4!$ Steve Wilson, 4/22Lawrence, KS 477 (2.4) $\dfrac{19 + 8\%}{4\%}$ Steve Wilson, 8/18Lawrence, KS 478 (3.2) $481 - \sqrt{9}$ Steve Wilson, 10/21Lawrence, KS 479 (2.6) $\dfrac{48}{.1} - .\overline{9}$ Steve Wilson, 8/18Lawrence, KS 480 (2.0) $48 \times (9 + 1)$ Steve Wilson, 8/18Lawrence, KS 481 (2.4) $\dfrac{4}{.8\%} - 19$ Steve Wilson, 8/18Lawrence, KS 482 (2.2) $481.\overline{9}$ Steve Wilson, 8/18Lawrence, KS 483 (2.0) $491 - 8$ Lawrence Ombasa, 4/16Overland Park, KS 484 (3.2) $481 + \sqrt{9}$ Steve Wilson, 10/21Lawrence, KS 485 (3.4) $\dfrac{98 - 1}{\sqrt{4\%}}$ Steve Wilson, 4/22Lawrence, KS 486 (2.6) $\left( \dfrac{1}{.\overline{8}\%} + 9 \right) \times 4$ Steve Wilson, 8/18Lawrence, KS 487 (3.4) $481 + (\sqrt{9})!$ Steve Wilson, 4/22Lawrence, KS 488 (2.0) $489 - 1$ Steve Wilson, 8/18Lawrence, KS 489 (2.0) $489 \times 1$ Archit Patel, 4/12Shawnee, KS 490 (2.0) $489 + 1$ Archit Patel, 5/12Shawnee, KS 491 (2.4) $\dfrac{4}{.8\%} - 9 \times 1$ Steve Wilson, 8/18Lawrence, KS 492 (2.2) $\dfrac{9 - 4}{1\%} - 8$ Steve Wilson, 8/18Lawrence, KS 493 (3.6) $\dfrac{4}{8\%} - (\sqrt{9})! - 1$ Steve Wilson, 10/21Lawrence, KS 494 (3.6) $\dfrac{4}{8\%} - (\sqrt{9})! \times 1$ Steve Wilson, 10/21Lawrence, KS 495 (2.2) $\dfrac{19.8}{4\%}$ Steve Wilson, 8/18Lawrence, KS 496 (2.2) $\dfrac{9}{1.8\%} - 4$ Steve Wilson, 8/18Lawrence, KS 497 (2.0) $498 - 1$ Steve Wilson, 8/18Lawrence, KS 498 (2.0) $498 \times 1$ Ben Kerkhoff, 6/12Lawrence, KS 499 (2.0) $498 + 1$ Miles Gill, 6/12Lawrence, KS 500 (2.2) $\dfrac{9 - 8 + 4}{1\%}$ Steve Wilson, 3/13Raytown, MO 501 (2.8) $\dfrac{4}{.8\%} + .9 + .1$ Steve Wilson, 4/22Lawrence, KS 502 (2.6) $\dfrac{4}{.8\%} + 1.\overline{9}$ Steve Wilson, 4/22Lawrence, KS 503 (3.0) $8^{4-1} - 9$ Paolo Noya, 12/13Bergamo, Italy 504 (2.2) $\dfrac{9}{1.8\%} + 4$ Steve Wilson, 4/22Lawrence, KS 505 (3.2) $\sqrt{4^9} - 8 + 1$ Steve Wilson, 4/22Lawrence, KS 506 (3.4) $8^{\sqrt{9}} - (4 - 1)!$ Steve Wilson, 4/22Lawrence, KS 507 (3.2) $8^{\sqrt{9}} - 4 - 1$ Steve Wilson, 4/22Lawrence, KS 508 (2.2) $\dfrac{9 - 4}{1\%} + 8$ Steve Wilson, 4/22Lawrence, KS 509 (2.4) $\dfrac{4}{.8\%} + 9 \times 1$ Steve Wilson, 4/22Lawrence, KS 510 (2.4) $\dfrac{4}{.8\%} + 9 + 1$ Steve Wilson, 3/13Raytown, MO 511 (3.2) $\sqrt{4^9} - 1^8$ Steve Wilson, 4/22Lawrence, KS 512 (3.0) $\dfrac{8^4}{9-1}$ Chris Harris, 6/12Overland Park, KS 513 (2.4) $\dfrac{48 + 9}{.\overline{1}}$ Steve Wilson, 4/22Lawrence, KS 514 (3.4) $8^{\sqrt{9}} + 1 \times \sqrt{4}$ Steve Wilson, 4/22Lawrence, KS 515 (3.2) $8^{4-1} + \sqrt{9}$ Steve Wilson, 4/22Lawrence, KS 516 (3.2) $8^{\sqrt{9}} + 4 \times 1$ Steve Wilson, 4/22Lawrence, KS 517 (2.4) $\dfrac{94}{.\overline{18}}$ Steve Wilson, 4/22Lawrence, KS 518 (3.4) $8^{\sqrt{9}} + (4 - 1)!$ Steve Wilson, 4/22Lawrence, KS 519 (2.4) $\dfrac{4}{.8\%} + 19$ Steve Wilson, 4/22Lawrence, KS 520 (2.8) $\dfrac{1.\overline{9} + 8\%}{.4\%}$ Steve Wilson, 3/13Raytown, MO 521 (3.0) $8^{4-1} + 9$ Paolo Noya, 12/13Bergamo, Italy 522 (3.8) $\dfrac{9}{(\sqrt{4})\%} + \dfrac{8}{.\overline{1}}$ Steve Wilson, 4/22Lawrence, KS 523 (3.8) $\sqrt[\sqrt{.\overline{1}}]{8} + 9 + \sqrt{4}$ Steve Wilson, 4/23Lawrence, KS 524 (3.6) $\dfrac{4}{8\pmf} + (1 + \sqrt{9})!$ Steve Wilson, 4/22Lawrence, KS 525 (2.4) $\dfrac{41.\overline{9}}{8\%}$ Steve Wilson, 4/22Lawrence, KS 526 (3.2) $8^{\sqrt{9}} + 14$ Steve Wilson, 4/22Lawrence, KS 527 (3.8) $\dfrac{4}{8 \pmf} + \dfrac{\sqrt{9}}{.\overline{1}}$ Steve Wilson, 5/22Lawrence, KS 528 (4.0) $\sqrt{\dfrac{4}{.\overline{1}\%\%}} - 8 \times 9$ Steve Wilson, 4/23Lawrence, KS 529 (3.4) $\sqrt{\sqrt{(14 + 9)^8}}$ Steve Wilson, 4/23Lawrence, KS 530 (3.2) $\sqrt{4^9} + 18$ Steve Wilson, 4/22Lawrence, KS 531 (2.6) $\dfrac{ \dfrac{4}{8\%} + 9}{.\overline{1}}$ Steve Wilson, 4/22Lawrence, KS 532 (3.6) $8^{\sqrt{9}} + \dfrac{\sqrt{4}}{.1}$ Steve Wilson, 4/23Lawrence, KS 533 (4.0) $\sqrt[\sqrt{.\overline{1}}]{8} + 4! - \sqrt{9}$ Steve Wilson, 4/23Lawrence, KS 534 (4.4) $\dfrac{(\sqrt{9})!\%}{.\overline{1}\pmf} - 8 + \sqrt{4}$ Steve Wilson, 4/23Lawrence, KS 535 (3.4) $8^{\sqrt{9}} + 4! - 1$ Steve Wilson, 4/22Lawrence, KS 536 (2.4) $\left( \dfrac{1}{.8\%} + 9 \right) \times 4$ Steve Wilson, 4/22Lawrence, KS 537 (3.4) $8^{\sqrt{9}} + 4! + 1$ Steve Wilson, 4/22Lawrence, KS 538 (3.6) $\sqrt{\sqrt{(4! - 1)^8}} + 9$ Steve Wilson, 4/23Lawrence, KS 539 (4.0) $\sqrt[\sqrt{.\overline{1}}]{8} + 4! + \sqrt{9}$ Steve Wilson, 4/23Lawrence, KS 540 (2.6) $\dfrac{48}{(9 - .\overline{1})\%}$ Steve Wilson, 9/20Lawrence, KS 541 (2.6) $\dfrac{4}{.\overline{8}\%} + 91$ Steve Wilson, 4/22Lawrence, KS 542 (4.2) $\sqrt[\sqrt{.\overline{1}}]{8} + 4! + (\sqrt{9})!$ Steve Wilson, 4/23Lawrence, KS 543 (4.2) $\dfrac{(8 - \sqrt{4})\%}{.\overline{1}\pmf} + \sqrt{9}$ Steve Wilson, 4/23Lawrence, KS 544 (4.2) $\dfrac{(\sqrt{9})!\%}{.\overline{1}\pmf} + 8 - 4$ Steve Wilson, 4/23Lawrence, KS 545 (2.6) $\dfrac{4}{.8\%} \times (1 + 9\%)$ Steve Wilson, 4/22Lawrence, KS 546 (4.4) $\dfrac{(\sqrt{9})!\%}{.\overline{1}\pmf} + 8 - \sqrt{4}$ Steve Wilson, 4/23Lawrence, KS 548 (3.6) $8^{\sqrt{9}} + \dfrac{4}{.\overline{1}}$ Steve Wilson, 5/22Lawrence, KS 549 (4.0) $\dfrac{(8 - \sqrt{4})\%}{.\overline{1}\pmf} + 9$ Steve Wilson, 4/23Lawrence, KS 550 (2.8) $\dfrac{8 - \dfrac{1}{.4}}{.\overline{9}\%}$ Steve Wilson, 9/20Lawrence, KS 551 (4.0) $((\sqrt{9})!)! \times .8 - \dfrac{1}{4\%}$ Steve Wilson, 4/23Lawrence, KS 552 (3.2) $184 \times \sqrt{9}$ Steve Wilson, 4/23Lawrence, KS 553 (3.2) $8^{\sqrt{9}} + 41$ Steve Wilson, 4/22Lawrence, KS 554 (4.8) $4 - \dfrac{8 + \sqrt{9}}{(\log(1\%))\%}$ Steve Wilson, 4/23Lawrence, KS 556 (4.2) $((\sqrt{9})!)! \times .8 - \dfrac{\sqrt{4}}{.1}$ Steve Wilson, 4/23Lawrence, KS 557 (3.6) $\sqrt{\sqrt{4!^8}} - 19$ Steve Wilson, 4/23Lawrence, KS 558 (3.8) $((\sqrt{9})!)! - 81 \times \sqrt{4}$ Steve Wilson, 4/22Lawrence, KS 559 (4.8) $\sqrt[(\ln\sqrt{\exp 1})]{4!} - 9 - 8$ Steve Wilson, 4/23Lawrence, KS 560 (3.4) $\dfrac{8}{.1} \times (4 + \sqrt{9})$ Steve Wilson, 4/22Lawrence, KS 561 (4.6) $8^{-\log(1\pm)} + 49$ Steve Wilson, 4/23Lawrence, KS 562 (3.8) $((\sqrt{9})!)! \times .8 - 14$ Steve Wilson, 5/22Lawrence, KS 564 (4.4) $((\sqrt{9})!)! \times .8 - \dfrac{4}{\sqrt{.\overline{1}}}$ Steve Wilson, 4/23Lawrence, KS 565 (2.4) $\dfrac{8 - 9\%}{1.4\%}$ Steve Wilson, 4/22Lawrence, KS 566 (3.6) $\sqrt{\sqrt{4!^8}} - 9 - 1$ Steve Wilson, 4/23Lawrence, KS 567 (3.2) $81 \times ( \sqrt{9} + 4)$ Collin Morgan, 7/12Overland Park, KS 568 (3.6) $(1 + \sqrt{9})!^{\sqrt{4}} - 8$ Steve Wilson, 4/22Lawrence, KS 569 (4.0) $\sqrt{\sqrt{4!^8}} - (\sqrt{9})! - 1$ Steve Wilson, 4/23Lawrence, KS 570 (2.2) $\dfrac{48 + 9}{.1}$ Steve Wilson, 9/20Lawrence, KS 571 (3.8) $((\sqrt{9})!)! \times .8 - 4 - 1$ Steve Wilson, 5/22Lawrence, KS 572 (3.6) $((\sqrt{9})!)! - 148$ Steve Wilson, 4/22Lawrence, KS 573 (3.8) $((\sqrt{9})!)! \times .8 - 4 + 1$ Steve Wilson, 5/22Lawrence, KS 574 (3.8) $\sqrt{\sqrt{4!^8}} - \sqrt{9} + 1$ Steve Wilson, 4/23Lawrence, KS 575 (2.2) $\dfrac{8 - \dfrac94}{1\%}$ Steve Wilson, 4/22Lawrence, KS 576 (3.4) $4! \times \sqrt{9} \times 8 \times 1$ Landon Nigh, 10/12Basehor, KS 577 (3.4) $4! \times \sqrt{9} \times 8 + 1$ Landon Nigh, 10/12Basehor, KS 578 (4.0) $((\sqrt{9})!)! \times .8 + 1 \times \sqrt{4}$ Steve Wilson, 4/23Lawrence, KS 579 (3.8) $((\sqrt{9})!)! \times .8 + 4 - 1$ Steve Wilson, 5/22Lawrence, KS 580 (2.2) $\dfrac{9.8 - 4}{1\%}$ Steve Wilson, 9/20Lawrence, KS 581 (2.8) $\dfrac{4}{.8\%} + \dfrac{9}{.\overline{1}}$ Steve Wilson, 4/22Lawrence, KS 582 (4.0) $\sqrt{\sqrt{4!^8}} + 1 \times (\sqrt{9})!$ Steve Wilson, 4/23Lawrence, KS 583 (4.0) $\sqrt{\sqrt{4!^8}} + (\sqrt{9})! + 1$ Steve Wilson, 4/23Lawrence, KS 584 (3.6) $(1 + \sqrt{9})!^{\sqrt{4}} + 8$ Steve Wilson, 4/22Lawrence, KS 585 (3.2) $9 \times \left( \sqrt{8^4} + 1 \right)$ Steve Wilson, 4/23Lawrence, KS 586 (3.6) $\sqrt{\sqrt{4!^8}} + 9 + 1$ Steve Wilson, 4/23Lawrence, KS 587 (4.8) $\dfrac{\cos(\arcsin(.8))}{1\pmf} - 9 - 4$ Steve Wilson, 4/23Lawrence, KS 588 (2.8) $\dfrac{1 - 4\%\%}{(9 + 8)\%\%}$ Steve Wilson, 4/22Lawrence, KS 589 (3.8) $((\sqrt{4\%})\%)^{-1} + 89$ Steve Wilson, 5/22Lawrence, KS 590 (2.4) $\dfrac{ \dfrac{4}{8\%} + 9}{.1}$ Steve Wilson, 9/20Lawrence, KS 591 (2.4) $\dfrac{4}{.8\%} + 91$ Steve Wilson, 4/22Lawrence, KS 592 (3.4) $\sqrt{4^9} + \dfrac{8}{.1}$ Steve Wilson, 4/22Lawrence, KS 593 (3.2) $\sqrt{4^9} + 81$ Steve Wilson, 4/22Lawrence, KS 594 (2.8) $\dfrac{.9}{(1 - .\overline{84})\%}$ Steve Wilson, 4/22Lawrence, KS 595 (3.6) $\sqrt{\sqrt{4!^8}} + 19$ Steve Wilson, 4/23Lawrence, KS 596 (3.6) $\dfrac{(\sqrt{9})!}{1\%} - 8 + 4$ Steve Wilson, 4/22Lawrence, KS 597 (3.4) $\left( \dfrac{8}{4\%} - 1 \right) \times \sqrt{9}$ Steve Wilson, 4/22Lawrence, KS 598 (3.6) $\dfrac{(\sqrt{9})!}{1\%} - \dfrac84$ Steve Wilson, 4/22Lawrence, KS 599 (3.4) $\dfrac{8}{4\%} \times \sqrt{9} - 1$ Yi Zheng, 3/16Olathe, KS 600 (2.2) $\dfrac{48}{(9 - 1)\%}$ Steve Wilson, 4/22Lawrence, KS 601 (3.4) $\dfrac{8}{4\%} \times \sqrt{9} + 1$ Yi Zheng, 3/16Olathe, KS 602 (3.6) $\dfrac{(\sqrt{9})!}{1\%} + \dfrac84$ Steve Wilson, 4/22Lawrence, KS 603 (3.4) $\left( \dfrac{8}{4\%} + 1 \right) \times \sqrt{9}$ Steve Wilson, 4/22Lawrence, KS 604 (3.6) $\dfrac{(\sqrt{9})!}{1\%} + 8 - 4$ Steve Wilson, 4/22Lawrence, KS 605 (3.8) $\dfrac{(\sqrt{9})!}{1\%} + \dfrac{4}{.8}$ Steve Wilson, 5/22Lawrence, KS 606 (3.8) $\dfrac{(\sqrt{9})!}{1\%} + 8 - \sqrt{4}$ Steve Wilson, 4/22Lawrence, KS 607 (4.4) $\sqrt{\dfrac{4}{.\overline{1}\%\%}} + 8 - .\overline{9}$ Steve Wilson, 4/23Lawrence, KS 608 (2.0) $19 \times 8 \times 4$ Allison Layne-Mulhern, 9/13Leawood, KS 609 (4.2) $\sqrt{\dfrac{4}{.\overline{1}\%\%}} + 8.\overline{9}$ Steve Wilson, 4/23Lawrence, KS 610 (3.8) $\dfrac{(\sqrt{9})!}{1\%} + 8 + \sqrt{4}$ Steve Wilson, 4/22Lawrence, KS 611 (4.2) $\sqrt{\dfrac{4}{.\overline{1}\%\%}} + 8 + \sqrt{9}$ Steve Wilson, 4/23Lawrence, KS 612 (2.2) $(9 + 8) \times \dfrac{4}{.\overline{1}}$ Steve Wilson, 4/22Lawrence, KS 613 (4.8) $\dfrac{4.9}{8\pmf} + \ln\sqrt{\exp{1}}$ Steve Wilson, 4/23Lawrence, KS 614 (4.2) $\dfrac{((\sqrt{9})! + .8)\%}{1\pmf} + \sqrt{4}$ Steve Wilson, 4/23Lawrence, KS 615 (3.8) $((\sqrt{9})!)! - 81 - 4!$ Steve Wilson, 5/22Lawrence, KS 616 (2.4) $\dfrac{4 + 1}{.8\%} - 9$ Steve Wilson, 4/22Lawrence, KS 617 (3.4) $((\sqrt{9})! - 1)^4 - 8$ Steve Wilson, 4/23Lawrence, KS 618 (4.0) $\dfrac{(\sqrt{9})!}{1\%} + \dfrac{8}{.\overline{4}}$ Steve Wilson, 4/23Lawrence, KS 619 (3.6) $\dfrac{4 + 1}{8\pmf} - (\sqrt{9})!$ Steve Wilson, 4/22Lawrence, KS 620 (3.6) $\dfrac{8 - .9 \times \sqrt{4}}{1\%}$ Steve Wilson, 5/22Lawrence, KS 621 (3.6) $\dfrac{(\sqrt{9})! - 1}{8\pmf} - 4$ Steve Wilson, 4/23Lawrence, KS 622 (3.4) $\dfrac{4 + 1}{8\pmf} - \sqrt{9}$ Steve Wilson, 4/22Lawrence, KS 623 (3.8) $\dfrac{(\sqrt{9})! - 1}{8\pmf} - \sqrt{4}$ Steve Wilson, 4/23Lawrence, KS 624 (2.4) $\dfrac{9 - 4}{.8\%} - 1$ Steve Wilson, 4/22Lawrence, KS 625 (2.2) $\dfrac{49 + 1}{8\%}$ Steve Wilson, 4/22Lawrence, KS 626 (2.4) $\dfrac{9 - 4}{.8\%} + 1$ Steve Wilson, 4/22Lawrence, KS 627 (3.8) $\dfrac{(\sqrt{9})! - 1}{8\pmf} + \sqrt{4}$ Steve Wilson, 4/23Lawrence, KS 628 (3.4) $\dfrac{4 + 1}{8\pmf} + \sqrt{9}$ Steve Wilson, 4/22Lawrence, KS 629 (3.4) $(8 - \sqrt{4})! - 91$ Steve Wilson, 5/22Lawrence, KS 630 (3.6) $\dfrac{9 \times 8 - \sqrt{4}}{.\overline{1}}$ Steve Wilson, 4/22Lawrence, KS 631 (3.4) $\dfrac{4 + 1}{8\pmf} + (\sqrt{9})!$ Steve Wilson, 4/22Lawrence, KS 632 (3.2) $8^{\sqrt{9}} + (4 + 1)!$ Steve Wilson, 4/22Lawrence, KS 633 (3.4) $((\sqrt{9})! - 1)^4 + 8$ Steve Wilson, 4/23Lawrence, KS 634 (2.4) $\dfrac{4 + 1}{.8\%} + 9$ Steve Wilson, 4/22Lawrence, KS 635 (3.6) $((\sqrt{9})!)! - 84 - 1$ Steve Wilson, 4/22Lawrence, KS 636 (3.6) $((\sqrt{9})!)! - 84 \times 1$ Steve Wilson, 4/22Lawrence, KS 637 (3.6) $((\sqrt{9})!)! - 84 + 1$ Steve Wilson, 4/22Lawrence, KS 638 (4.2) $((\sqrt{9})!)! \times .\overline{8} - 1 \times \sqrt{4}$ Steve Wilson, 4/23Lawrence, KS 639 (3.8) $\dfrac{\sqrt{8^4}}{.1} - .\overline{9}$ Steve Wilson, 5/22Lawrence, KS 640 (2.2) $\dfrac{8}{\left(\dfrac94 - 1 \right)\%}$ Steve Wilson, 4/22Lawrence, KS 641 (3.8) $((\sqrt{9})!)! - 81 + \sqrt{4}$ Steve Wilson, 4/22Lawrence, KS 642 (4.2) $8 \times \sqrt{(.\overline{1})^{-4}} - (\sqrt{9})!$ Steve Wilson, 4/23Lawrence, KS 643 (3.6) $((\sqrt{9})!)! - 81 + 4$ Steve Wilson, 4/22Lawrence, KS 644 (2.4) $\dfrac{8 \times 9}{.\overline{1}} - 4$ Steve Wilson, 4/22Lawrence, KS 645 (4.0) $8 \times \sqrt{(.\overline{1})^{-4}} - \sqrt{9}$ Steve Wilson, 4/23Lawrence, KS 646 (3.6) $\dfrac{8 \times 9}{.\overline{1}} - \sqrt{4}$ Steve Wilson, 4/22Lawrence, KS 647 (4.2) $8 \times \sqrt{(.\overline{1})^{-4}} - .\overline{9}$ Steve Wilson, 4/23Lawrence, KS 648 (2.0) $18 \times 9 \times 4$ Steve Wilson, 4/22Lawrence, KS 649 (3.4) $\dfrac{\sqrt{8^4}}{.1} + 9$ Steve Wilson, 5/22Lawrence, KS 650 (2.4) $\dfrac{9 + 4}{.1 - 8\%}$ Steve Wilson, 4/22Lawrence, KS 651 (4.0) $8 \times \sqrt{(.\overline{1})^{-4}} + \sqrt{9}$ Steve Wilson, 4/23Lawrence, KS 652 (2.4) $\dfrac{8 \times 9}{.\overline{1}} + 4$ Steve Wilson, 4/22Lawrence, KS 654 (4.0) $((\sqrt{9})!)! \times .\overline{8} + 14$ Steve Wilson, 4/23Lawrence, KS 655 (3.8) $((\sqrt{9})!)! - \sqrt{8^4} - 1$ Steve Wilson, 4/23Lawrence, KS 656 (3.8) $((\sqrt{9})!)! - 1 \times \sqrt{8^4}$ Steve Wilson, 4/23Lawrence, KS 657 (3.8) $8 \times \sqrt{(.\overline{1})^{-4}} + 9$ Steve Wilson, 4/23Lawrence, KS 658 (2.0) $94 \times (8 - 1)$ Steve Wilson, 4/22Lawrence, KS 660 (2.6) $\dfrac{8 - 1.4}{.\overline{9}\%}$ Steve Wilson, 4/22Lawrence, KS 663 (3.8) $((\sqrt{9})!)! + 4! - 81$ Steve Wilson, 5/22Lawrence, KS 664 (4.0) $((\sqrt{9})!)! + 4! - \dfrac{8}{.1}$ Steve Wilson, 4/23Lawrence, KS 665 (4.2) $((\sqrt{9})!)! \times .\overline{8} + \dfrac{1}{4\%}$ Steve Wilson, 4/23Lawrence, KS 666 (3.8) $\sqrt{\sqrt{4!^8}} + \dfrac{9}{.1}$ Steve Wilson, 4/23Lawrence, KS 667 (3.6) $\sqrt{\sqrt{4!^8}} + 91$ Steve Wilson, 4/23Lawrence, KS 668 (3.8) $\dfrac{\sqrt{9}}{.\overline{4}\%} - 8 + 1$ Steve Wilson, 4/23Lawrence, KS 670 (2.6) $\dfrac{8 - .9 - .4}{1\%}$ Steve Wilson, 4/22Lawrence, KS 671 (2.8) $\dfrac{.8}{.\overline{1}\%} - 49$ Steve Wilson, 4/22Lawrence, KS 672 (2.0) $84 \times (9 - 1)$ Steve Wilson, 4/22Lawrence, KS 673 (3.6) $((\sqrt{9})!)! - 48 + 1$ Steve Wilson, 4/22Lawrence, KS 674 (3.8) $\dfrac{\sqrt{9}}{.\overline{4}\%} - 1^8$ Steve Wilson, 4/23Lawrence, KS 675 (2.2) $\dfrac{18 + 9}{4\%}$ Steve Wilson, 4/22Lawrence, KS 676 (3.8) $\dfrac{\sqrt{9}}{.\overline{4}\%} + 1^8$ Steve Wilson, 4/23Lawrence, KS 677 (4.4) $\dfrac{\sqrt{9} - .\overline{8}\%}{1 \times .\overline{4}\%}$ Steve Wilson, 4/23Lawrence, KS 678 (3.8) $((\sqrt{9})!)! - 18 - 4!$ Steve Wilson, 5/22Lawrence, KS 679 (4.2) $((\sqrt{9})!)! - \sqrt{\sqrt{\sqrt{41^8}}}$ Steve Wilson, 4/23Lawrence, KS 680 (2.2) $(9 + 8) \times \dfrac{4}{.1}$ Steve Wilson, 4/22Lawrence, KS 681 (4.2) $\dfrac{\sqrt{9}}{.\overline{4}\%} + (\sqrt{8 + 1})!$ Steve Wilson, 4/23Lawrence, KS 682 (3.8) $\dfrac{\sqrt{9}}{.\overline{4}\%} + 8 - 1$ Steve Wilson, 4/23Lawrence, KS 683 (3.8) $\dfrac{\sqrt{9}}{.\overline{4}\%} + 8 \times 1$ Steve Wilson, 4/23Lawrence, KS 684 (2.2) $9 \times \left( \dfrac{8}{.1} - 4 \right)$ Steve Wilson, 4/22Lawrence, KS 686 (3.6) $\dfrac{8 - .9}{1\%} - 4!$ Steve Wilson, 5/22Lawrence, KS 687 (3.6) $((\sqrt{9})!)! - 4 \times 8 - 1$ Steve Wilson, 4/22Lawrence, KS 688 (2.2) $8 \times \left( \dfrac{9}{.1} - 4 \right)$ Steve Wilson, 4/22Lawrence, KS 689 (3.6) $((\sqrt{9})!)! - 4 \times 8 + 1$ Steve Wilson, 4/22Lawrence, KS 690 (3.8) $\dfrac{8 - .9 - \sqrt{4\%}}{1\%}$ Steve Wilson, 5/22Lawrence, KS 691 (4.8) $\dfrac{4 + \sec\arctan(.8)}{1\%} - 9$ Steve Wilson, 4/23Lawrence, KS 692 (3.4) $\dfrac{9 - \sqrt{4}}{1\%} - 8$ Steve Wilson, 5/22Lawrence, KS 693 (2.0) $9 \times (81 - 4)$ Steve Wilson, 4/22Lawrence, KS 695 (3.8) $((\sqrt{9})!)! - 4! - 1^8$ Steve Wilson, 5/22Lawrence, KS 696 (2.0) $8 \times (91 - 4)$ Steve Wilson, 4/22Lawrence, KS 697 (2.0) $41 \times (9 + 8)$ Steve Wilson, 4/22Lawrence, KS 698 (3.6) $((\sqrt{9})!)! - 14 - 8$ Steve Wilson, 5/22Lawrence, KS 699 (3.8) $((\sqrt{9})!)! - \dfrac{8}{.4} - 1$ Steve Wilson, 5/22Lawrence, KS 700 (2.2) $\dfrac{49}{(8 - 1)\%}$ Steve Wilson, 4/22Lawrence, KS 701 (3.4) $(8 - \sqrt{4})! - 19$ Steve Wilson, 5/22Lawrence, KS 702 (3.4) $9 \times \left( \dfrac{8}{.1} - \sqrt{4} \right)$ Steve Wilson, 5/22Lawrence, KS 703 (3.8) $((\sqrt{9})!)! - 4! + 8 - 1$ Steve Wilson, 5/22Lawrence, KS 704 (2.6) $\dfrac{8 - 1}{.\overline{9}\%} + 4$ Steve Wilson, 4/22Lawrence, KS 705 (3.2) $81 \times 9 - 4!$ Steve Wilson, 5/22Lawrence, KS 706 (2.2) $\dfrac{8}{1\%} - 94$ Steve Wilson, 4/22Lawrence, KS 707 (2.8) $\dfrac{.8}{.\overline{1}\%} - 9 - 4$ Steve Wilson, 4/22Lawrence, KS 708 (3.4) $\dfrac{9 - \sqrt{4}}{1\%} + 8$ Steve Wilson, 5/22Lawrence, KS 709 (3.6) $((\sqrt{9})!)! - 8 - 4 + 1$ Steve Wilson, 5/22Lawrence, KS 710 (3.4) $\dfrac{8 - .9}{1^4 \%}$ Steve Wilson, 5/22Lawrence, KS 711 (3.4) $((\sqrt[4]{81})!)! - 9$ Steve Wilson, 5/22Lawrence, KS 712 (3.4) $(8 - \sqrt{4})! - 9 + 1$ Steve Wilson, 5/22Lawrence, KS 713 (3.6) $((\sqrt{9})!)! - 8 + 1^4$ Steve Wilson, 5/22Lawrence, KS 714 (2.4) $\dfrac{8 - .9}{1\%} + 4$ Steve Wilson, 4/22Lawrence, KS 715 (2.8) $\dfrac{.8}{.\overline{1}\%} - 9 + 4$ Steve Wilson, 4/22Lawrence, KS 716 (2.2) $\dfrac{9 \times 8}{.1} - 4$ Steve Wilson, 4/22Lawrence, KS 717 (3.6) $((\sqrt{9})!)! - 8 + 4 + 1$ Steve Wilson, 5/22Lawrence, KS 718 (3.4) $\dfrac{9 \times 8}{.1} - \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 719 (3.4) $\dfrac{8}{1\%} - \sqrt{9^4}$ Steve Wilson, 5/22Lawrence, KS 720 (2.6) $\dfrac{1}{(9.\overline{8} + 4)\%\%}$ Steve Wilson, 4/22Lawrence, KS 721 (3.0) $9^{4-1} - 8$ Steve Wilson, 5/22Lawrence, KS 722 (3.4) $\dfrac{9 \times 8}{.1} + \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 723 (3.6) $((\sqrt{9})!)! + \dfrac84 + 1$ Steve Wilson, 5/22Lawrence, KS 724 (2.0) $91 \times 8 - 4$ Nathan Fields, 3/12Overland Park, KS 725 (2.0) $81 \times 9 - 4$ Steve Wilson, 4/22Lawrence, KS 726 (2.8) $\dfrac{.9}{.\overline{1}\%} - 84$ Steve Wilson, 4/22Lawrence, KS 727 (3.2) $81 \times 9 - \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 728 (3.4) $91 \times \sqrt{ \sqrt{8^4}}$ Steve Wilson, 5/22Lawrence, KS 729 (3.0) $\dfrac{9^4}{8 + 1}$ Parker Thomsen, 2/15Lenexa, KS 730 (3.2) $91 \times 8 + \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 731 (3.2) $81 \times 9 + \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 732 (2.0) $91 \times 8 + 4$ Allison Layne-Mulhern, 10/13Leawood, KS 733 (2.0) $81 \times 9 + 4$ Steve Wilson, 4/22Lawrence, KS 734 (3.6) $\dfrac{8 - .9}{1\%} + 4!$ Steve Wilson, 5/22Lawrence, KS 735 (3.8) $((\sqrt{9})!)! + 4! - 8 - 1$ Steve Wilson, 5/22Lawrence, KS 736 (3.4) $8 \times \left( \dfrac{9}{.1} + \sqrt{4} \right)$ Steve Wilson, 5/22Lawrence, KS 737 (3.0) $9^{4-1} + 8$ Steve Wilson, 5/22Lawrence, KS 738 (3.4) $9 \times \left( \dfrac{8}{.1} + \sqrt{4} \right)$ Steve Wilson, 5/22Lawrence, KS 739 (3.4) $(8 - \sqrt{4})! + 19$ Steve Wilson, 5/22Lawrence, KS 740 (2.6) $\dfrac{8.4 - 1}{.\overline{9}\%}$ Steve Wilson, 4/22Lawrence, KS 741 (2.6) $\dfrac{1 - .4}{8\%\%} - 9$ Steve Wilson, 4/22Lawrence, KS 742 (3.4) $\dfrac{\sqrt{9}}{4 \pmf} - 8 \times 1$ Steve Wilson, 5/22Lawrence, KS 743 (3.4) $\dfrac{\sqrt{9}}{4 \pmf} - 8 + 1$ Steve Wilson, 5/22Lawrence, KS 744 (2.0) $8 \times (94 - 1)$ Steve Wilson, 4/22Lawrence, KS 745 (3.6) $\dfrac{(\sqrt{9})!}{8 \pmf} - 4 - 1$ Steve Wilson, 5/22Lawrence, KS 746 (3.6) $\dfrac{(\sqrt{9})!}{8 \pmf} - 4 \times 1$ Steve Wilson, 5/22Lawrence, KS 747 (2.6) $9 \times (84 - 1)$ Steve Wilson, 4/22Lawrence, KS 748 (3.8) $\dfrac{(\sqrt{9})!}{8 \pmf} - 1 \times \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 749 (2.6) $\dfrac{.9}{(8 + 4)\%\%} - 1$ Steve Wilson, 4/22Lawrence, KS 750 (2.2) $\dfrac{84 - 9}{.1}$ Steve Wilson, 4/22Lawrence, KS 751 (2.0) $94 \times 8 - 1$ Nathan Fields, 3/12Overland Park, KS 752 (2.0) $94 \times 8 \times 1$ Ameshia Kearney, 3/12Overland Park, KS 753 (2.0) $94 \times 8 + 1$ Hee Do Yoon, 4/12Overland Park, KS 754 (3.8) $\dfrac{8 - .4}{1\%} - (\sqrt{9})!$ Steve Wilson, 5/22Lawrence, KS 755 (2.0) $84 \times 9 - 1$ Parker Thomsen, 2/15Lenexa, KS 756 (2.0) $189 \times 4$ Nathan Fields, 4/12Overland Park, KS 757 (2.0) $84 \times 9 + 1$ Allison Layne-Mulhern, 10/13Leawood, KS 758 (3.4) $\dfrac{\sqrt{9}}{4 \pmf} + 8 \times 1$ Steve Wilson, 5/22Lawrence, KS 759 (2.6) $\dfrac{1 - .4}{8\%\%} + 9$ Steve Wilson, 4/22Lawrence, KS 760 (2.0) $8 \times (94 + 1)$ Steve Wilson, 4/22Lawrence, KS 761 (2.8) $\dfrac{8 - .4}{.\overline{9}\%} + 1$ Steve Wilson, 4/22Lawrence, KS 762 (2.8) $\dfrac{.9}{.\overline{1}\%} - 48$ Steve Wilson, 4/22Lawrence, KS 763 (3.6) $\dfrac{8 - .4}{1\%} + \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 764 (2.2) $\dfrac{8}{1\%} - 9 \times 4$ Steve Wilson, 4/22Lawrence, KS 765 (2.0) $9 \times (84 + 1)$ Steve Wilson, 4/22Lawrence, KS 766 (3.6) $\dfrac{8 - \sqrt{9\%}}{1\%} - 4$ Steve Wilson, 5/22Lawrence, KS 767 (3.4) $\dfrac{8}{1\%} - 4! - 9$ Steve Wilson, 5/22Lawrence, KS 768 (2.6) $8 \times \left( \dfrac{1}{.\overline{9}\%} - 4 \right)$ Steve Wilson, 4/22Lawrence, KS 769 (2.4) $\dfrac{8 - .4}{1\%} + 9$ Steve Wilson, 4/22Lawrence, KS 770 (2.8) $\dfrac{8.1 - .4}{.\overline{9}\%}$ Steve Wilson, 4/22Lawrence, KS 771 (3.6) $\dfrac{8 - \sqrt{4\%}}{1\%} - 9$ Steve Wilson, 5/22Lawrence, KS 772 (3.8) $\dfrac{8 - \sqrt{9\%}}{1\%} + \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 773 (3.6) $\dfrac{8}{1\%} - 4! - \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 774 (2.4) $\dfrac{94 - 8}{.\overline{1}}$ Steve Wilson, 4/22Lawrence, KS 775 (2.6) $\dfrac{8 - \dfrac14}{.\overline{9}\%}$ Steve Wilson, 4/22Lawrence, KS 776 (3.2) $\dfrac{8}{1^9 \%} - 4!$ Steve Wilson, 5/22Lawrence, KS 777 (3.8) $\dfrac{8}{.\overline{9}\%} - 4! + 1$ Steve Wilson, 5/22Lawrence, KS 778 (2.8) $\dfrac{.9}{.\overline{1}\%} - 8 \times 4$ Steve Wilson, 4/22Lawrence, KS 779 (3.6) $\dfrac{8}{1\%} - 4! + \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 780 (2.6) $\dfrac{9 - .8 - .4}{1\%}$ Steve Wilson, 4/22Lawrence, KS 781 (4.0) $\dfrac{8 - \sqrt{4\%}}{1\%} + .\overline{9}$ Steve Wilson, 4/23Lawrence, KS 782 (3.4) $\dfrac{8}{1\%} - 9 \times \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 783 (3.8) $\dfrac{8 - \sqrt{4\%}}{1\%} + \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 784 (3.8) $8 \times \left( \dfrac{1}{.\overline{9}\%} - \sqrt{4} \right)$ Steve Wilson, 5/22Lawrence, KS 785 (3.4) $\dfrac{8}{1\%} - 4! + 9$ Steve Wilson, 5/22Lawrence, KS 786 (2.6) $\dfrac{8}{.\overline{9}\%} - 14$ Steve Wilson, 4/22Lawrence, KS 787 (2.2) $\dfrac{8}{1\%} - 9 - 4$ Steve Wilson, 4/22Lawrence, KS 788 (3.4) $\dfrac{8}{1\%} - 4 \times \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 789 (3.4) $\dfrac{8}{1\%} - 9 - \sqrt{4}$ Steve Wilson, 5/22Lawrence, KS 790 (3.8) $\dfrac{8 - .4 - \sqrt{9\%}}{1\%}$ Steve Wilson, 5/22Lawrence, KS 791 (3.6) $\dfrac{8}{1\%} - \sqrt{ \sqrt{9^4}}$ Steve Wilson, 5/22Lawrence, KS 792 (2.0) $198 \times 4$ Xinpei Zhao, 7/12Lawrence, KS 793 (3.4) $\dfrac{8}{1\%} - 4 - \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 794 (2.8) $\dfrac{8 - .1}{.\overline{9}\%} + 4$ Steve Wilson, 4/22Lawrence, KS 795 (2.2) $\dfrac{8}{1\%} - 9 + 4$ Steve Wilson, 4/22Lawrence, KS 796 (2.4) $\dfrac{8}{.1 - 9\%} - 4$ Steve Wilson, 4/22Lawrence, KS 797 (2.4) $\dfrac{89}{.\overline{1}} - 4$ Steve Wilson, 4/22Lawrence, KS 798 (2.8) $\dfrac{.9}{.\overline{1}\%} - 8 - 4$ Steve Wilson, 4/22Lawrence, KS 799 (3.4) $\dfrac{8}{1\%} - 4 + \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 800 (2.2) $\dfrac{18 \times 4}{9\%}$ Steve Wilson, 4/22Lawrence, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).