$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

## Integermania!

#### Ramanujan

Srinivasa Ramanujan (1887-1920) was a largely self-taught mathematician from India, some of whose results still inspire research today. Once, when ill in the hospital in England, he was visited by fellow mathematician G. H. Hardy (1877-1947), who later wrote:

I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."

Using one copy each of the digits 1, 7, 2, and 9, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400), Page 2 (401+).

 401 (2.4) $\dfrac{7.\overline{9}}{2\%} + 1$ Steve Wilson, 10/15Lawrence, KS 402 (3.4) $\dfrac{ \sqrt{9 + 7}}{1\%} + 2$ Steve Wilson, 8/19Lawrence, KS 403 (2.4) $\dfrac{1}{.2\%} - 97$ Steve Wilson, 1/16Lawrence, KS 404 (3.8) $\dfrac{.9}{.\overline{2}\%} - 1^7$ Steve Wilson, 3/16Lawrence, KS 405 (2.4) $(7 - 2) \times \dfrac{9}{.\overline{1}}$ Steve Wilson, 1/16Lawrence, KS 406 (2.8) $\dfrac{.7}{.\overline{2}\%} + 91$ Steve Wilson, 1/16Lawrence, KS 407 (2.2) $\dfrac{9 - 1}{2\%} + 7$ Steve Wilson, 1/16Lawrence, KS 408 (3.6) $17 \times ((\sqrt{9})! - 2)!$ Steve Wilson, 8/19Lawrence, KS 409 (2.2) $\dfrac{7 + 1}{2\%} + 9$ Steve Wilson, 1/16Lawrence, KS 410 (2.2) $\dfrac{7 - 2.9}{1\%}$ Steve Wilson, 10/15Lawrence, KS 411 (2.8) $\dfrac{.9}{.\overline{2}\%} + 7 - 1$ Steve Wilson, 2/16Lawrence, KS 412 (2.6) $\dfrac{9}{.1 \times .\overline{2}} + 7$ Steve Wilson, 2/16Lawrence, KS 413 (2.2) $\left( \dfrac{1}{2\%} + 9 \right) \times 7$ Steve Wilson, 2/16Lawrence, KS 414 (2.4) $\dfrac{92}{1 - .\overline{7}}$ Steve Wilson, 2/16Lawrence, KS 415 (2.4) $(9 - .7) \times \dfrac{1}{2\%}$ Steve Wilson, 2/16Lawrence, KS 416 (2.4) $\dfrac{9 - .7}{2\%} + 1$ Steve Wilson, 3/16Lawrence, KS 417 (3.4) $\dfrac{7!}{12} - \sqrt{9}$ Steve Wilson, 3/16Lawrence, KS 418 (3.6) $\dfrac{7}{.1} \times (\sqrt{9})! - 2$ Steve Wilson, 1/22Lawrence, KS 419 (3.6) $\dfrac{7!}{12} - .\overline{9}$ Steve Wilson, 12/21Lawrence, KS 420 (2.2) $\dfrac{91 - 7}{.2}$ Steve Wilson, 10/15Lawrence, KS 421 (2.4) $\dfrac{1}{.2\%} - 79$ Steve Wilson, 12/16Lawrence, KS 422 (2.8) $\dfrac{.9}{.\overline{2}\%} + 17$ Steve Wilson, 12/16Lawrence, KS 423 (2.6) $\dfrac{9 - 7\%}{2.1\%}$ Steve Wilson, 12/16Lawrence, KS 426 (3.6) $\dfrac{7!}{12} + (\sqrt{9})!$ Steve Wilson, 12/16Lawrence, KS 427 (6.2) $p_{2 \times 9} \times 7 \times 1$ G. Smith, 12/21Bethesda, MD 428 (3.4) $\dfrac{\sqrt{9}}{1\%} + 2^7$ Steve Wilson, 1/22Lawrence, KS 429 (2.8) $\dfrac{.\overline{9}}{.2\%} - 71$ Steve Wilson, 12/16Lawrence, KS 430 (2.4) $\dfrac{9 \times .7 - 2}{1\%}$ Steve Wilson, 4/17Lawrence, KS 431 (2.6) $\dfrac{7}{2\%} + \dfrac{9}{.\overline{1}}$ Steve Wilson, 4/17Lawrence, KS 432 (2.4) $\dfrac{97 - 1}{.\overline{2}}$ Steve Wilson, 8/18Lawrence, KS 433 (2.2) $\dfrac{9}{2\%} - 17$ Steve Wilson, 8/18Lawrence, KS 434 (2.6) $\dfrac{1}{.\overline{2}\%} - 9 - 7$ Steve Wilson, 8/18Lawrence, KS 435 (2.2) $\dfrac{9.7 - 1}{2\%}$ Steve Wilson, 8/18Lawrence, KS 436 (2.8) $\dfrac{97 - .\overline{1}}{.\overline{2}}$ Steve Wilson, 8/18Lawrence, KS 437 (2.4) $\dfrac{1}{.2\%} - 9 \times 7$ Steve Wilson, 9/18Lawrence, KS 438 (2.4) $\dfrac{9 - .1}{2\%} - 7$ Steve Wilson, 9/18Lawrence, KS 439 (4.2) $7^2 \times 9 + \log(1\%)$ Steve Wilson, 12/21Lawrence, KS 440 (2.4) $\dfrac{ \dfrac{7}{.2} + 9}{.1}$ Steve Wilson, 9/18Lawrence, KS 441 (2.2) $\dfrac{7}{2\%} + 91$ Steve Wilson, 9/18Lawrence, KS 442 (2.2) $\dfrac{9}{2\%} - 7 - 1$ Steve Wilson, 9/18Lawrence, KS 443 (2.2) $\dfrac{9}{2\%} - 7 \times 1$ Steve Wilson, 8/19Lawrence, KS 444 (2.2) $\dfrac{9}{2\%} - 7 + 1$ Steve Wilson, 8/19Lawrence, KS 445 (2.2) $\dfrac{7.9 + 1}{2\%}$ Steve Wilson, 8/19Lawrence, KS 446 (2.4) $\dfrac{9 - (7 + 1)\%}{2\%}$ Steve Wilson, 11/19Lawrence, KS 447 (2.4) $\dfrac{9 - (7 - 1)\%}{2\%}$ Steve Wilson, 11/19Lawrence, KS 448 (2.2) $\dfrac{9.1}{2\%} - 7$ Steve Wilson, 11/19Lawrence, KS 449 (3.2) $\dfrac{9}{2\%} - 1^7$ Steve Wilson, 2/20Lawrence, KS 450 (2.2) $\dfrac{9 \times (7 - 2)}{.1}$ Steve Wilson, 11/19Lawrence, KS 451 (3.2) $\dfrac{9}{2\%} + 1^7$ Steve Wilson, 2/20Lawrence, KS 452 (2.4) $\dfrac{9 - .1}{2\%} + 7$ Steve Wilson, 11/19Lawrence, KS 453 (2.4) $\dfrac{9 + (7-1)\%}{2\%}$ Steve Wilson, 12/19Lawrence, KS 454 (2.4) $\dfrac{9 + (7+1)\%}{2\%}$ Steve Wilson, 12/19Lawrence, KS 455 (2.0) $91 \times (7 - 2)$ Isabel C., 5/13New York, NY 456 (2.2) $\dfrac{9}{2\%} + 7 - 1$ Steve Wilson, 12/19Lawrence, KS 457 (2.2) $\dfrac{9}{2\%} + 7 \times 1$ Steve Wilson, 12/19Lawrence, KS 458 (2.2) $\dfrac{9}{2\%} + 7 + 1$ Steve Wilson, 12/19Lawrence, KS 459 (2.8) $\dfrac{1 + (9 - 7)\%}{.\overline{2}\%}$ Steve Wilson, 2/20Lawrence, KS 460 (2.8) $\dfrac{1 + 7.\overline{9}\%}{.2\%}$ Steve Wilson, 2/20Lawrence, KS 462 (2.2) $\dfrac{9.1}{2\%} + 7$ Steve Wilson, 2/20Lawrence, KS 463 (3.8) $\dfrac{1 - (\sqrt{9})!\%}{2 \pm} - 7$ Steve Wilson, 1/22Lawrence, KS 465 (2.4) $\dfrac{9 + 1 - .7}{2\%}$ Steve Wilson, 4/20Lawrence, KS 466 (2.6) $\dfrac{1}{.\overline{2}\%} + 7 + 9$ Steve Wilson, 4/20Lawrence, KS 467 (2.2) $\dfrac{9}{2\%} + 17$ Steve Wilson, 4/20Lawrence, KS 468 (2.6) $\dfrac{ \dfrac{9}{.2} + 7}{.\overline{1}}$ Steve Wilson, 4/20Lawrence, KS 470 (2.6) $\dfrac{9 - 7\%}{(2 - .1)\%}$ Steve Wilson, 4/20Lawrence, KS 471 (6.2) $p_{19} \times 7 + 2$ G. Smith, 12/21Bethesda, MD 474 (2.6) $\dfrac{1 - 7\%}{.2\%} + 9$ Steve Wilson, 5/20Lawrence, KS 475 (2.6) $\dfrac{ \dfrac{9}{.\overline{2}} + 7}{.1}$ Steve Wilson, 5/20Lawrence, KS 476 (2.8) $\dfrac{.9}{.\overline{2}\%} + 71$ Steve Wilson, 5/20Lawrence, KS 479 (3.4) $\dfrac{1}{2 \pmf} - 7 \times \sqrt{9}$ Steve Wilson, 1/22Lawrence, KS 480 (2.2) $\dfrac{97 - 1}{.2}$ Steve Wilson, 5/20Lawrence, KS 483 (2.8) $\dfrac{.\overline{9}}{.2\%} - 17$ Steve Wilson, 5/20Lawrence, KS 484 (2.2) $\dfrac{97}{.2} - 1$ Steve Wilson, 7/20Lawrence, KS 485 (2.2) $\dfrac{97}{2 \times .1}$ Margaret Wilson, 4/13Atlanta, GA 486 (2.2) $\dfrac{97}{.2} + 1$ Steve Wilson, 7/20Lawrence, KS 489 (2.8) $\dfrac{9.\overline{7}}{2\%} + .\overline{1}$ Steve Wilson, 7/20Lawrence, KS 490 (2.2) $\dfrac{97 + 1}{.2}$ Steve Wilson, 7/20Lawrence, KS 491 (2.2) $\dfrac{7 - 2}{1\%} - 9$ Steve Wilson, 7/20Lawrence, KS 492 (2.6) $\dfrac{1}{.2\%} - 7.\overline{9}$ Steve Wilson, 8/20Lawrence, KS 493 (2.0) $17 \times 29$ Porter Adams, 4/13Atlanta, GA 494 (2.8) $\dfrac{1}{.2\%} - 7 + .\overline{9}$ Steve Wilson, 8/20Lawrence, KS 495 (2.6) $\dfrac{9 - .2}{1.\overline{7}\%}$ Steve Wilson, 8/20Lawrence, KS 496 (3.6) $\dfrac{1}{.2\%} - \sqrt{9 + 7}$ Steve Wilson, 11/20Lawrence, KS 497 (2.0) $71 \times (9 - 2)$ Steve Wilson, 8/20Lawrence, KS 498 (2.4) $\dfrac{1}{.2\%} + 7 - 9$ Steve Wilson, 8/20Lawrence, KS 499 (2.6) $\dfrac{7 - 2}{1\%} - .\overline{9}$ Steve Wilson, 11/20Lawrence, KS 500 (2.2) $\dfrac{7 \times 2 - 9}{1\%}$ Steve Wilson, 11/20Lawrence, KS 501 (2.6) $\dfrac{7 - 2}{1\%} + .\overline{9}$ Steve Wilson, 11/20Lawrence, KS 502 (2.4) $\dfrac{1}{.2\%} + 9 - 7$ Steve Wilson, 11/20Lawrence, KS 503 (3.6) $\dfrac{1^7}{.2\%} + \sqrt{9}$ Steve Wilson, 12/20Lawrence, KS 504 (3.0) $2^9 - 7 - 1$ Steve Wilson, 12/20Lawrence, KS 505 (3.0) $2^9 - 7 \times 1$ Sierra Henricks, 2/14Olathe, KS 506 (2.8) $\dfrac{1}{.2\%} + 7 - .\overline{9}$ Steve Wilson, 12/20Lawrence, KS 507 (2.2) $\dfrac{1 + 9}{2\%} + 7$ Steve Wilson, 4/21Lawrence, KS 508 (2.6) $\dfrac{1}{.2\%} + 7.\overline{9}$ Steve Wilson, 4/21Lawrence, KS 509 (2.2) $\dfrac{7 - 2}{1\%} + 9$ Steve Wilson, 4/21Lawrence, KS 510 (2.6) $\dfrac{1 + (9 - 7)\%}{.2\%}$ Steve Wilson, 4/21Lawrence, KS 511 (3.0) $2^9 - 1^7$ Greg Bayer, 8/19Sydney, New South Wales 512 (3.0) $2^9 \times 1^7$ Paolo Noya, 12/13Bergamo, Italy 513 (2.0) $19 \times 27$ Porter Adams, 4/13Atlanta, GA 514 (3.2) $(7 + 1)^{\sqrt{9}} + 2$ Steve Wilson, 12/21Lawrence, KS 516 (2.4) $\dfrac{1}{.2\%} + 9 + 7$ Steve Wilson, 4/21Lawrence, KS 517 (2.8) $\dfrac{.\overline{9}}{.2\%} + 17$ Steve Wilson, 5/21Lawrence, KS 518 (3.0) $2^9 + 7 - 1$ Kyle Sanders, 5/13Albany, NY 519 (3.0) $2^9 + 7 \times 1$ Kyle Sanders, 5/13Albany, NY 520 (2.4) $\dfrac{9}{2\%} + \dfrac{7}{.1}$ Steve Wilson, 5/21Lawrence, KS 521 (2.2) $\dfrac{9}{2\%} + 71$ Steve Wilson, 5/21Lawrence, KS 522 (2.8) $\dfrac{1 + (7 + 9)\%}{.\overline{2}\%}$ Steve Wilson, 5/21Lawrence, KS 523 (4.0) $7^{\sqrt{9}} + \dfrac{.2}{.\overline{1}\%}$ Steve Wilson, 12/21Lawrence, KS 525 (2.2) $7 \times \dfrac{9}{.12}$ Justin Lanier, 4/13Brooklyn, NY 526 (2.6) $\dfrac{1 + 7\%}{.2\%} - 9$ Steve Wilson, 5/21Lawrence, KS 528 (3.6) $\dfrac{(\sqrt{9})!}{1\%} - 72$ Steve Wilson, 12/21Lawrence, KS 529 (2.6) $\dfrac{1}{.\overline{2}\%} + 79$ Steve Wilson, 6/21Lawrence, KS 535 (2.2) $\dfrac{9.7 + 1}{2\%}$ Steve Wilson, 6/21Lawrence, KS 538 (2.6) $\dfrac{1 + 9\%}{.2\%} - 7$ Steve Wilson, 6/21Lawrence, KS 539 (3.2) $\dfrac{7!}{9} - 21$ Jonathan Frank, 5/21Rye, NY 540 (2.8) $\dfrac{1 + 7.\overline{9}\%}{.2\%}$ Steve Wilson, 6/21Lawrence, KS 544 (2.6) $\dfrac{1 + 7\%}{.2\%} + 9$ Steve Wilson, 6/21Lawrence, KS 547 (2.6) $\dfrac{1}{.\overline{2}\%} + 97$ Steve Wilson, 7/21Lawrence, KS 548 (3.2) $\dfrac{7!}{9} - 12$ Jonathan Frank, 5/21Rye, NY 549 (2.4) $\dfrac{7 \times 9 - 2}{.\overline{1}}$ Steve Wilson, 7/21Lawrence, KS 550 (2.2) $\dfrac{9 - \dfrac72}{1\%}$ Steve Wilson, 7/21Lawrence, KS 552 (2.0) $(7 - 1) \times 92$ Steve Wilson, 7/21Lawrence, KS 553 (2.4) $7 \times \left( \dfrac{9}{.\overline{1}} - 2 \right)$ Steve Wilson, 7/21Lawrence, KS 557 (3.2) $\dfrac{7!}{9} - 2 - 1$ Sophie Cox, 6/13Perth, Western Australia 558 (3.2) $\dfrac{7!}{9} - 2 \times 1$ Jonathan Frank, 5/21Rye, NY 559 (3.2) $\dfrac{7!}{9} - 2 + 1$ Jonathan Frank, 6/21Rye, NY 560 (2.8) $(1 - .2) \times \dfrac{7}{.\overline{9}\%}$ Steve Wilson, 8/21Lawrence, KS 561 (3.2) $\dfrac{7!}{9} + 2 - 1$ Jonathan Frank, 6/21Rye, NY 562 (3.2) $\dfrac{7!}{9} \times 1 + 2$ Leif Muhammad, 3/14Kansas City, MO 563 (2.4) $\dfrac{1}{.2\%} + 7 \times 9$ Steve Wilson, 8/21Lawrence, KS 565 (2.4) $\dfrac{7 \times 9}{.\overline{1}} - 2$ Steve Wilson, 8/21Lawrence, KS 566 (3.0) $7 \times 9^2 - 1$ Paolo Noya, 12/13Bergamo, Italy 567 (2.4) $\dfrac{72 - 9}{.\overline{1}}$ Steve Wilson, 8/21Lawrence, KS 568 (3.0) $7 \times 9^2 + 1$ Paolo Noya, 12/13Bergamo, Italy 569 (2.4) $\dfrac{7 \times 9}{.\overline{1}} + 2$ Steve Wilson, 8/21Lawrence, KS 570 (2.8) $\dfrac{ \dfrac{.\overline{9}}{2\%} + 7}{.1}$ Steve Wilson, 9/21Lawrence, KS 571 (2.8) $\dfrac{.\overline{9}}{.2\%} + 71$ Steve Wilson, 9/21Lawrence, KS 572 (3.2) $\dfrac{7!}{9} + 12$ Jonathan Frank, 6/21Rye, NY 574 (3.0) $(9^2 + 1) \times 7$ Lynne Erwin, 6/16Overland Park, KS 576 (2.0) $72 \times (9 - 1)$ Steve Wilson, 9/21Lawrence, KS 579 (2.4) $\dfrac{1}{.2\%} + 79$ Steve Wilson, 9/21Lawrence, KS 580 (2.6) $\dfrac{1 + (7 + 9)\%}{.2\%}$ Steve Wilson, 9/21Lawrence, KS 581 (2.4) $7 \times \left( \dfrac{9}{.\overline{1}} + 2 \right)$ Steve Wilson, 10/21Lawrence, KS 583 (3.0) $2^9 + 71$ Iris Behm, 2/14Lenexa, KS 585 (2.4) $\dfrac{7 \times 9 + 2}{.\overline{1}}$ Steve Wilson, 10/21Lawrence, KS 590 (2.2) $\dfrac{7.9 - 2}{1\%}$ Steve Wilson, 10/21Lawrence, KS 597 (2.4) $\dfrac{1}{.2\%} + 97$ Steve Wilson, 10/21Lawrence, KS 598 (2.6) $\dfrac{7 - 1}{.\overline{9}\%} - 2$ Steve Wilson, 10/21Lawrence, KS 600 (2.2) $\dfrac{12}{(9 - 7)\%}$ Steve Wilson, 11/21Lawrence, KS 601 (2.8) $\dfrac{.7}{.\overline{1}\%} - 29$ Steve Wilson, 11/21Lawrence, KS 602 (2.6) $\dfrac{7 - 1}{.\overline{9}\%} + 2$ Steve Wilson, 11/21Lawrence, KS 608 (2.2) $\dfrac{7}{1\%} - 92$ Steve Wilson, 11/21Lawrence, KS 610 (2.2) $\dfrac{7 \times 9 - 2}{.1}$ Steve Wilson, 11/21Lawrence, KS 619 (3.2) $\dfrac{7}{1\%} - 9^2$ Jonathan Frank, 1/22Rye, NY 623 (3.4) $((1+2)!)! - 97$ Gregory Bayer, 9/19Sydney, NSW 625 (3.2) $(7 - 2)^{\sqrt{9} + 1}$ Gregory Bayer, 11/20Sydney, NSW 628 (2.2) $7 \times \dfrac{9}{.1} - 2$ Echo Anderson, 12/13Lenexa, KS 632 (2.2) $7 \times \dfrac{9}{.1} + 2$ Echo Anderson, 12/13Lenexa, KS 635 (2.0) $91 \times 7 - 2$ Iris Behm, 1/14Lenexa, KS 639 (2.0) $91 \times 7 + 2$ Iris Behm, 1/14Lenexa, KS 641 (3.4) $((1+2)!)! - 79$ Gregory Bayer, 9/19Sydney, NSW 643 (2.0) $92 \times 7 - 1$ Agnieszka Hajnas, 5/13Kansas City, MO 644 (2.0) $92 \times 7 \times 1$ Steve Wilson, 8/13Lawrence, KS 645 (2.0) $92 \times 7 + 1$ Daniella Donofrio, 5/13Olathe, KS 647 (2.0) $72 \times 9 - 1$ Daniella Donofrio, 5/13Olathe, KS 648 (2.0) $72 \times 9 \times 1$ Kendra Stindt, 8/13Topeka, KS 649 (2.0) $72 \times 9 + 1$ Daniella Donofrio, 5/13Olathe, KS 650 (2.2) $\dfrac{91}{7 \times 2\%}$ David Anderson, 2/14Olathe, KS 665 (2.2) $19 \times \dfrac{7}{.2}$ Echo Anderson, 11/13Lenexa, KS 671 (2.2) $\dfrac{7}{1\%} - 29$ Jonathan Frank, 1/22Rye, NY 691 (3.2) $(7 - 1)! - 29$ Gregory Bayer, 5/20Sydney, New South Wales 703 (2.0) $712 - 9$ Emily Boudville, 6/13Perth, Western Australia 704 (3.4) $((2 + 1)!)! - 9 - 7$ Gregory Bayer, 2/20Sydney, New South Wales 707 (2.2) $\dfrac{7}{1\%} + 9 - 2$ Jonathan Frank, 12/21Rye, NY 709 (3.2) $(7 - 1)! - 2 - 9$ Gregory Bayer, 2/20Sydney, New South Wales 711 (2.2) $\dfrac{7}{1\%} + 9 + 2$ Jonathan Frank, 1/22Rye, NY 713 (3.4) $(\sqrt{9} + 2 + 1)! - 7$ Gregory Bayer, 2/20Sydney, New South Wales 718 (2.2) $\dfrac{7}{1\%} + 9 \times 2$ Jonathan Frank, 1/22Rye, NY 720 (3.4) $((9 - 7 + 2 - 1)!)!$ Gregory Bayer, 2/20Sydney, New South Wales 721 (2.0) $712 + 9$ Steve Wilson, 8/13Lawrence, KS 722 (3.4) $((1 + 2)!)! - 7 + 9$ Gregory Bayer, 12/19Sydney, New South Wales 727 (3.4) $(\sqrt{9} + 2 + 1)! + 7$ Gregory Bayer, 2/20Sydney, New South Wales 728 (2.0) $729 - 1$ Lisa Downing, 4/13Simpsonville, SC 729 (2.0) $729 \times 1$ Michael Caldwell, 3/13Olathe, KS 730 (2.0) $729 + 1$ Lisa Downing, 4/13Simpsonville, SC 731 (3.2) $(7 - 1)! + 2 + 9$ Gregory Bayer, 3/20Sydney, New South Wales 736 (3.0) $9^{2+1} + 7$ Andrea Craig, 3/17Olathe, KS 738 (3.2) $(7 - 1)! + 9 \times 2$ Gregory Bayer, 5/20Sydney, New South Wales 756 (2.0) $12 \times 7 \times 9$ Agnieszka Hajnas, 5/13Kansas City, MO 763 (6.2) $p_{29} \times 7 \times 1$ G. Smith, 12/21Bethesda, MD 764 (6.2) $p_{29} \times 7 + 1$ G. Smith, 12/21Bethesda, MD 765 (2.2) $17 \times \dfrac{9}{.2}$ Echo Anderson, 11/13Lenexa, KS 781 (3.2) $\dfrac{7}{1\%} + 9^2$ Jonathan Frank, 1/22Rye, NY 789 (2.0) $791 - 2$ Bing Guo, 10/13Lawrence, KS 791 (2.0) $792 - 1$ Barret Seagroves, 4/13Atlanta, GA 792 (2.0) $792 \times 1$ Barret Seagroves, 4/13Atlanta, GA 793 (2.0) $792 + 1$ Barret Seagroves, 4/13Atlanta, GA 847 (3.4) $\dfrac{17}{2\%} - \sqrt{9}$ Jonathan Frank, 8/21Rye, NY 867 (3.2) $17^2 \times \sqrt{9}$ Hannah Maleki, 11/16Overland Park, KS 903 (2.0) $129 \times 7$ Bing Guo, 11/13Lawrence, KS 905 (2.0) $912 - 7$ Emily Boudville, 6/13Perth, Western Australia 914 (2.0) $921 - 7$ Bing Guo, 10/13Lawrence, KS 919 (2.0) $912 + 7$ Steve Wilson, 8/13Lawrence, KS 926 (2.0) $927 - 1$ Giuseppe Favacchio, 4/13Scicli, Italy 927 (2.0) $927 \times 1$ Sophie Fischer & Violet McCabe, 4/13New York, NY 928 (2.0) $927 + 1$ Giuseppe Favacchio, 4/13Scicli, Italy 931 (3.0) $7^2 \times 19$ Hyun Cheong, 2/14Overland Park, KS 948 (2.0) $79 \times 12$ Allison Layne-Mulhern, 10/13Leawood, KS 949 (3.2) $\dfrac{9}{1\%} + 7^2$ Jonathan Frank, 10/21Rye, NY 968 (2.2) $\dfrac{97}{.1} - 2$ Margaret Wilson, 4/13Atlanta, GA 969 (2.0) $971 - 2$ D.J. Demjanik, 12/13Shawnee, KS 971 (2.0) $972 - 1$ Edie Abraham-Macht, 4/13Brooklyn, NY 972 (2.0) $\dfrac{972}{1}$ Edie Abraham-Macht, 4/13Brooklyn, NY 973 (2.0) $972 + 1$ Giuseppe Favacchio, 4/13Scicli, Italy 1024 (3.0) $2^7 \times (9 - 1)$ Gregory Bayer, 3/20Sydney, NSW 1029 (3.2) $7^{2+1} \times \sqrt{9}$ Gregory Bayer, 3/20Sydney, NSW 1079 (3.2) $(7 - 2)! \times 9 - 1$ Gregory Bayer, 11/19Sydney, NSW 1080 (3.4) $(7 - 1)! \times \dfrac{ \sqrt{9}}{2}$ Gregory Bayer, 3/20Sydney, New South Wales 1081 (3.2) $(7 - 2)! \times 9 + 1$ Jonathan Frank, 5/21Rye, NY 1119 (3.2) $7! \times \dfrac29 - 1$ Ashlyn Howatson, 4/13Perth, Western Australia 1120 (3.2) $7! \times \dfrac29 \times 1$ Parker Thomsen, 5/15Lenexa, KS 1121 (3.2) $7! \times \dfrac29 + 1$ Parker Thomsen, 5/15Lenexa, KS 1143 (2.0) $127 \times 9$ Bing Guo, 11/13Lawrence, KS 1151 (3.0) $2^7 \times 9 - 1$ Sierra Henricks, 4/14Olathe, KS 1152 (3.0) $2^7 \times 9^1$ Hannah Maleki, 9/16Overland Park, KS 1153 (3.0) $2^7 \times 9 + 1$ Iris Behm, 1/14Lenexa, KS 1164 (2.0) $97 \times 12$ Allison Layne-Mulhern, 11/13Leawood, KS 1176 (3.4) $( \sqrt{9} + 1)! \times 7^2$ Gregory Bayer, 3/20Sydney, NSW 1260 (2.2) $\dfrac{9 \times 2 \times 7}{.1}$ Margaret Wilson, 4/13Atlanta, GA 1274 (2.0) $91 \times 7 \times 2$ Allison Layne-Mulhern, 10/13Leawood, KS 1279 (2.0) $1279$ Ethan L., 4/13New York, NY 1280 (3.0) $2^7 \times (9 + 1)$ Gregory Bayer, 4/20Sydney, NSW 1297 (2.0) $1297$ Garrett Donnelly, 5/13Atlanta, GA 1323 (2.0) $7 \times 9 \times 21$ Kendra Stindt, 8/13Topeka, KS 1344 (2.0) $192 \times 7$ Echo Anderson, 11/13Lenexa, KS 1368 (2.0) $72 \times 19$ Justin Keck, 3/17Lawrence, KS 1377 (3.0) $9^2 \times 17$ Deborah Kangas, 1/14Lenexa, KS 1391 (3.2) $2 \times \dfrac{7}{1\%} - 9$ Jonathan Frank, 8/21Rye, NY 1397 (3.4) $2 \times \dfrac{7}{1\%} - \sqrt{9}$ Jonathan Frank, 8/21Rye, NY 1403 (3.4) $2 \times \dfrac{7}{1\%} + \sqrt{9}$ Jonathan Frank, 8/21Rye, NY 1409 (3.2) $2 \times \dfrac{7}{1\%} + 9$ Jonathan Frank, 8/21Rye, NY 1438 (2.0) $719 \times 2$ D.J. Demjanik, 12/13Shawnee, KS 1548 (2.0) $172 \times 9$ Allison Layne-Mulhern, 11/13Leawood, KS 1564 (2.0) $17 \times 92$ Echo Anderson, 12/13Lenexa, KS 1580 (2.2) $79 \times \dfrac{2}{.1}$ D.J. Demjanik, 9/13Shawnee, KS 1582 (2.0) $791 \times 2$ D.J. Demjanik, 12/13Shawnee, KS 1659 (2.0) $79 \times 21$ D.J. Demjanik, 9/13Shawnee, KS 1680 (3.2) $\dfrac{7!}{9} \times (2 + 1)$ Jonathan Frank, 7/21Rye, NY 1729 (2.0) $1729$ Scott Thibodeaux, 4/13Denver, CO 1792 (2.0) $1792$ Sara Fridovich-Keil, 6/13Decatur, GA 1793 (2.2) $\dfrac{9}{1\%} \times 2 - 7$ Jonathan Frank, 9/21Rye, NY 1807 (2.2) $\dfrac{9}{1\%} \times 2 + 7$ Jonathan Frank, 9/21Rye, NY 1834 (2.0) $917 \times 2$ D.J. Demjanik, 12/13Shawnee, KS 1927 (2.0) $1927$ Sara Fridovich-Keil, 6/13Decatur, GA 1942 (2.0) $971 \times 2$ Kendra Stindt, 11/13Topeka, KS 1940 (2.2) $\dfrac{97}{.1} \times 2$ Margaret Wilson, 4/13Atlanta, GA 1953 (2.0) $217 \times 9$ Alicia Kasper, 10/13Cranbury, NJ 1972 (2.0) $1972$ Sara Fridovich-Keil, 6/13Decatur, GA 2037 (2.0) $97 \times 21$ D.J. Demjanik, 8/13Shawnee, KS 2048 (3.2) $2^{7 + 1 + \sqrt{9}}$ Jonathan Frank, 5/21Rye, NY 2059 (2.0) $29 \times 71$ Kendra Stindt, 8/13Topeka, KS 2186 (3.0) $\sqrt[2]{9^7} - 1$ Steve Wilson, 12/20Lawrence, KS 2187 (3.0) $\sqrt[2]{9^7} \times 1$ Steve Wilson, 9/20Lawrence, KS 2186 (3.0) $\sqrt[2]{9^7} + 1$ Steve Wilson, 12/20Lawrence, KS 2401 (3.0) $7^{(9-1)/2}$ Gregory Bayer, 11/19Sydney, NSW 2403 (3.2) $7^{\sqrt{9} + 1} + 2$ Gregory Bayer, 11/20Sydney, NSW 2430 (2.2) $\dfrac{9}{1\%} \times 2.7$ Jonathan Frank, 9/21Rye, NY 2432 (3.0) $2^7 \times 19$ Hannah Maleki, 9/16Overland Park, KS 2457 (2.0) $27 \times 91$ Echo Anderson, 12/13Lenexa, KS 2511 (2.4) $\dfrac{279}{.\overline{1}}$ Jonathan Frank, 12/21Rye, NY 2527 (3.0) $19^2 \times 7$ Justin Keck, 3/17Lawrence, KS 2592 (3.4) $\dfrac{9!}{7 \times 2} \times .1$ Parker Thomsen, 5/15Lenexa, KS 2601 (3.0) $17^2 \times 9$ Sierra Henricks, 2/14Olathe, KS 2673 (2.4) $\dfrac{297}{.\overline{1}}$ Jonathan Frank, 12/21Rye, NY 2700 (3.4) $\dfrac{9}{1\%} \times \sqrt{7 + 2}$ Jonathan Frank, 12/21Rye, NY 2719 (2.0) $2719$ Sara Fridovich-Keil, 7/13Decatur, GA 2791 (2.0) $2791$ Sara Fridovich-Keil, 7/13Decatur, GA 2800 (3.4) $\dfrac{7!}{9 \times .2 \times 1}$ Susan Vongphrachanh, 4/17Kansas City, KS 2880 (3.2) $\dfrac{(9-1)!}{2 \times 7}$ Gregory Bayer, 11/19Sydney, NSW 2917 (2.0) $2917$ Sara Fridovich-Keil, 7/13Decatur, GA 2971 (2.0) $2971$ Sara Fridovich-Keil, 7/13Decatur, GA 3087 (3.0) $7^{2+1} \times 9$ Gregory Bayer, 4/20Sydney, NSW 3150 (3.2) $\dfrac{7}{1\%} \times \dfrac92$ Jonathan Frank, 7/21Rye, NY 3185 (2.2) $91 \times \dfrac{7}{.2}$ Echo Anderson, 11/13Lenexa, KS 3195 (2.2) $71 \times \dfrac{9}{.2}$ Echo Anderson, 11/13Lenexa, KS 3240 (3.2) $(7 - 1)! \times \dfrac92$ Gregory Bayer, 5/20Sydney, New South Wales 3241 (3.2) $91^2 - 7!$ Susan Vongphrachanh, 4/17Kansas City, KS 3583 (3.0) $2^9 \times 7 - 1$ Sierra Henricks, 1/14Olathe, KS 3584 (3.0) $2^9 \times 7 \times 1$ D.J. Demjanik, 8/13Shawnee, KS 3585 (3.0) $2^9 \times 7 + 1$ Sierra Henricks, 4/14Olathe, KS 3844 (3.0) $(7 \times 9 - 1)^2$ Steve Wilson, 9/20Lawrence, KS 3949 (2.2) $\dfrac{79}{2\%} - 1$ David Anderson, 1/14Olathe, KS 3950 (2.2) $\dfrac{79}{2\%} \times 1$ David Anderson, 1/14Olathe, KS 3951 (2.2) $\dfrac{79}{2\%} + 1$ Alyssa Trembly, 1/14Spring Hill, KS 3968 (3.0) $(9 \times 7)^2 - 1$ Huntly Cooper, 4/13New York, NY 3969 (3.0) $(9 \times 7)^2 \times 1$ Julia B., 7/13Brooklyn, NY 3970 (3.0) $(9 \times 7)^2 + 1$ Sierra Henricks, 3/14Olathe, KS 4096 (3.0) $2^{19-7}$ Hyun Cheong, 3/14Overland Park, KS 4459 (3.0) $7^2 \times 91$ Sierra Henricks, 1/14Olathe, KS 4500 (2.2) $\dfrac{9}{1\%} \times (7 - 2)$ Jonathan Frank, 9/21Rye, NY 4543 (2.2) $\dfrac{91}{2\%} - 7$ David Anderson, 2/14Olathe, KS 4557 (2.2) $\dfrac{91}{2\%} + 7$ David Anderson, 2/14Olathe, KS 4679 (3.2) $7! - 19^2$ Susan Vongphrachanh, 4/17Kansas City, KS 4849 (2.2) $\dfrac{97}{2\%} - 1$ David Anderson, 1/14Olathe, KS 4850 (2.2) $\dfrac{97}{2\%} \times 1$ David Anderson, 1/14Olathe, KS 4851 (2.2) $\dfrac{97}{2\%} + 1$ Alyssa Trembly, 1/14Spring Hill, KS 4911 (3.2) $7! - 129$ Gregory Bayer, 11/19Sydney, NSW 4969 (3.2) $(9 - 2)! - 71$ Gregory Bayer, 7/20Sydney, NSW 5021 (3.2) $7! - 9 \times 2 - 1$ Jonathan Frank, 10/21Rye, NY 5022 (3.2) $7! - 9 \times 2 \times 1$ Jonathan Frank, 10/21Rye, NY 5023 (3.2) $(9 - 2)! - 17$ Gregory Bayer, 7/20Sydney, NSW 5032 (3.0) $71^2 - 9$ Sierra Henricks, 3/14Olathe, KS 5033 (3.2) $(9 - 2)! - \dfrac71$ Gregory Bayer, 7/20Sydney, NSW 5034 (3.2) $1 + 7! + 2 - 9$ Adam Shafton, 4/16Overland Park, KS 5038 (3.2) $71^2 - \sqrt{9}$ Jonathan Frank, 10/21Rye, NY 5044 (3.2) $71^2 + \sqrt{9}$ Jonathan Frank, 10/21Rye, NY 5046 (3.2) $(9 - 2)! + 7 - 1$ Gregory Bayer, 7/20Sydney, NSW 5047 (3.2) $7! + 9 - 2 \times 1$ Agnieszka Hajnas, 5/13Kansas City, MO 5050 (3.0) $71^2 + 9$ Sierra Henricks, 2/14Olathe, KS 5121 (3.2) $7! + 1 \times 9^2$ Hannah Maleki, 9/16Overland Park, KS 5183 (3.4) $\left( \dfrac{9!}{7!} \right)^2 - 1$ Jonathan Frank, 7/21Rye, NY 5184 (3.4) $\left( \dfrac{9!}{7!} \right)^2 \times 1$ Jonathan Frank, 7/21Rye, NY 5185 (3.4) $\left( \dfrac{9!}{7!} \right)^2 + 1$ Jonathan Frank, 7/21Rye, NY 5670 (3.2) $\dfrac{9!}{(1 + 7)^2}$ Greg Bayer, 8/19Sydney, New South Wales 5751 (3.0) $9^2 \times 71$ Kendra Stindt, 11/13Topeka, KS 5760 (3.4) $\dfrac{(9 - 1)!}{\sqrt{7^2}}$ Gregory Bayer, 5/20Sydney, New South Wales 5961 (3.2) $7! + 921$ Susan Vongphrachanh, 4/17Kansas City, KS 6240 (3.0) $79^2 - 1$ Sierra Henricks, 2/14Olathe, KS 6241 (3.0) $79^2 \times 1$ Jonathan Frank, 12/21Rye, NY 6242 (3.0) $79^2 + 1$ Sierra Henricks, 3/14Olathe, KS 6384 (2.0) $912 \times 7$ Bing Guo, 11/13Lawrence, KS 6408 (2.0) $712 \times 9$ Kendra Stindt, 11/13Topeka, KS 6447 (2.0) $921 \times 7$ Bing Guo, 11/13Lawrence, KS 6480 (2.2) $72 \times \dfrac{9}{.1}$ D.J. Demjanik, 9/13Shawnee, KS 6489 (2.0) $721 \times 9$ Bing Guo, 10/13Lawrence, KS 6532 (2.0) $92 \times 71$ Jon Giuliano, 4/13Atlanta, GA 6552 (2.0) $72 \times 91$ Kendra Stindt, 8/13Topeka, KS 6561 (3.0) $9^{7-2-1}$ Chryspus Muema, 5/16Olathe, KS 6650 (2.2) $19 \times \dfrac{7}{2\%}$ Alyssa Trembly, 2/14Spring Hill, KS 7129 (2.0) $7129$ Sara Fridovich-Keil, 7/13Decatur, GA 7192 (2.0) $7192$ Sara Fridovich-Keil, 6/13Decatur, GA 7219 (2.0) $7219$ Sara Fridovich-Keil, 6/13Decatur, GA 7291 (2.0) $7291$ Sara Fridovich-Keil, 5/13Decatur, GA 7776 (3.2) $(7 - 1)^{\sqrt{9} + 2}$ Gregory Bayer, 11/20Sydney, NSW 7898 (2.2) $\dfrac{79}{1\%} - 2$ Sierra Henricks, 4/14Olathe, KS 7902 (2.2) $\dfrac{79}{1\%} + 2$ Alyssa Trembly, 1/14Spring Hill, KS 7912 (2.0) $7912$ Sara Fridovich-Keil, 5/13Decatur, GA 7921 (2.0) $7921$ Sara Fridovich-Keil, 5/13Decatur, GA 8100 (2.2) $\dfrac{9}{1\%} \times (7 + 2)$ Jonathan Frank, 9/21Rye, NY 8274 (3.0) $91^2 - 7$ Lynne Erwin, 6/16Overland Park, KS 8288 (3.0) $91^2 + 7$ Lynne Erwin, 6/16Overland Park, KS 8704 (3.0) $2^9 \times 17$ Alondra Aviles Gallegos, 2/17Kansas City, KS 9127 (2.0) $9127$ Jon Giuliano, 4/13Atlanta, GA 9193 (2.2) $\dfrac{92}{1\%} - 7$ David Anderson, 1/14Olathe, KS 9207 (2.2) $\dfrac{92}{1\%} + 7$ Alyssa Trembly, 1/14Spring Hill, KS 9270 (2.2) $\dfrac{927}{.1}$ Deborah Kangas, 1/14Lenexa, KS 9271 (2.0) $9271$ Jon Giuliano, 4/13Atlanta, GA 9408 (3.0) $97^2 - 1$ Sierra Henricks, 2/14Olathe, KS 9409 (3.0) $97^2 \times 1$ Vamsi, 9/14Visakhapatnam, India 9410 (3.0) $97^2 + 1$ Sierra Henricks, 3/14Olathe, KS 9702 (2.2) $\dfrac{97}{1\%} + 2$ Alyssa Trembly, 1/14Spring Hill, KS 9712 (2.0) $9712$ Jon Giuliano, 4/13Atlanta, GA 9720 (2.2) $\dfrac{972}{.1}$ Margaret Wilson, 4/13Atlanta, GA 9721 (2.0) $9721$ Jon Giuliano, 4/13Atlanta, GA 10089 (3.2) $7! \times 2 + 9 \times 1$ Chryspus Muema, 4/16Olathe, KS 12600 (2.2) $\dfrac{9 \times 2 \times 7}{1\%}$ Jonathan Frank, 11/21Rye, NY 15123 (3.2) $71^2 \times \sqrt{9}$ Hannah Maleki, 11/16Overland Park, KS 16806 (3.2) $7^{\sqrt{9} + 2} - 1$ Jonathan Frank, 11/21Rye, NY 16807 (3.2) $7^{\sqrt{9} + 2} \times 1$ Gregory Bayer, 11/20Sydney, NSW 16808 (3.2) $7^{\sqrt{9} + 2} + 1$ Gregory Bayer, 11/20Sydney, NSW 19683 (2.0) $\left( \dfrac{21}{7} \right)^9$ Julia B., 4/13New York, NY 20300 (2.2) $29 \times \dfrac{7}{1\%}$ Alyssa Trembly, 2/14Spring Hill, KS 22679 (3.2) $7! \times \dfrac92 - 1$ Parker Thomsen, 5/15Lenexa, KS 22680 (3.2) $\dfrac{9!}{(7 + 1) \times 2}$ Jonathan Frank, 3/21Rye, NY 22681 (3.2) $7! \times \dfrac92 + 1$ Parker Thomsen, 5/15Lenexa, KS 23409 (3.0) $(17 \times 9)^2$ Kashmira Sayani, 1/17Overland Park, KS 24192 (3.2) $\dfrac{9!}{7 \times 2 + 1}$ Jonathan Frank, 3/21Rye, NY 25919 (3.2) $\dfrac{9!}{7 \times 2} - 1$ Aaron Parsons, 8/16Pittsville, MD 25920 (3.2) $\dfrac{9!}{7 \times 2 \times 1}$ Jonathan Frank, 3/21Rye, NY 25921 (3.2) $\dfrac{9!}{7 \times 2} + 1$ Aaron Parsons, 8/16Pittsville, MD 31850 (2.2) $\dfrac{91}{2\%} \times 7$ David Anderson, 2/14Olathe, KS 31950 (2.2) $71 \times \dfrac{9}{2\%}$ Alyssa Trembly, 2/14Spring Hill, KS 32041 (3.0) $179^2$ Justin Keck, 3/17Lawrence, KS 32768 (3.0) $2^{9+7-1}$ Jonathan Frank, 4/21Rye, NY 36288 (3.2) $\dfrac{9!}{7 + 2 + 1}$ Jonathan Frank, 3/21Rye, NY 38809 (3.0) $197^2$ Justin Keck, 3/17Lawrence, KS 40313 (3.4) $(9 - 1)! - \sqrt{7^2}$ Gregory Bayer, 7/20Sydney, NSW 40319 (3.2) $\dfrac{9!}{7 + 2} - 1$ Jonathan Frank, 11/21Rye, NY 40320 (3.2) $\dfrac{9!}{7 + 2 \times 1}$ Jonathan Frank, 3/21Rye, NY 40321 (3.2) $\dfrac{9!}{7 + 2} + 1$ Jonathan Frank, 11/21Rye, NY 45362 (3.2) $7! \times 9 + 2 \times 1$ Madison Gielen, 6/13Perth, Western Australia 45369 (3.0) $71^2 \times 9$ Jonathan Frank, 11/21Rye, NY 51842 (3.2) $\dfrac{9!}{7} + 2 \times 1$ Agnieszka Hajnas, 5/13Kansas City, MO 57967 (3.0) $91^2 \times 7$ Obada Albadawi, 5/16Overland Park, KS 59049 (3.0) $9^{12-7}$ Hyun Cheong, 3/14Overland Park, KS 64400 (2.2) $92 \times \dfrac{7}{1\%}$ Alyssa Trembly, 2/14Spring Hill, KS 64800 (2.2) $72 \times \dfrac{9}{1\%}$ Alyssa Trembly, 2/14Spring Hill, KS 65000 (2.4) $\dfrac{91}{2\% \times 7\%}$ David Anderson, 2/14Olathe, KS 65536 (3.0) $2^{(9+7) \times 1}$ Jonathan Frank, 4/21Rye, NY 117649 (3.0) $7^{9-2-1}$ Chryspus Muema, 5/16Olathe, KS 131072 (3.0) $2^{9+7+1}$ Chryspus Muema, 5/16Olathe, KS 358400 (3.2) $2^9 \times \dfrac{7}{1\%}$ Steve Wilson, 1/13Raytown, MO 367899 (3.4) $9! + 7! - 21$ Obada Albadawi, 5/16Overland Park, KS 367921 (3.2) $9! + 71^2$ Hannah Maleki, 11/16Overland Park, KS 390625 (3.0) $(7 - 2)^{9-1}$ Jonathan Frank, 4/21Rye, NY 516961 (3.0) $719^2$ Hannah Maleki, 9/16Overland Park, KS 625681 (3.0) $791^2$ Justin Keck, 3/17Lawrence, KS 703125 (3.2) $\left( \dfrac{1}{.2} \right)^7 \times 9$ Hyun Cheong, 2/14Overland Park, KS 725767 (3.2) $9! \times 2 + 7 \times 1$ Chryspus Muema, 4/16Olathe, KS 823543 (3.0) $7^{9-2} \times 1$ Steve Wilson, 9/20Lawrence, KS 840889 (3.0) $917^2$ Andrea Craig, 3/17Olathe, KS 1953125 (3.0) $(7 - 2)^{9 \times 1}$ Jonathan Frank, 4/21Rye, NY 1953126 (3.0) $(7 - 2)^9 + 1$ Natalie Eppler, 11/16Paola, KS 2476099 (3.0) $19^{7-2}$ Hyun Cheong, 3/14Overland Park, KS 3981312 (3.0) $\dfrac{12^7}{9}$ Salvador Aguirre, 10/16Overland Park, KS 4782972 (3.0) $9^7 + 2 + 1$ Adam Shafton, 4/16Overland Park, KS 9565938 (3.0) $9^7 \times 2 \times 1$ Agnieszka Hajnas, 5/13Kansas City, MO 9765625 (3.0) $(7 - 2)^{9+1}$ Jonathan Frank, 4/21Rye, NY 10000000 (3.0) $(9 + 2 - 1)^7$ Steve Wilson, 9/20Lawrence, KS 19487171 (3.0) $(9 + 2)^7 \times 1$ Deborah Kangas, 5/14Lenexa, KS 19487172 (3.0) $(9 + 2)^7 + 1$ Andrea Craig, 3/17Olathe, KS 35831799 (3.0) $12^7 - 9$ Salvador Aguirre, 10/16Overland Park, KS 35831808 (3.0) $(9 + 2 + 1)^7$ Deborah Kangas, 5/14Lenexa, KS 35831817 (3.0) $12^7 + 9$ Salvador Aguirre, 10/16Overland Park, KS 36194688 (3.2) $9! + 12^7$ Hannah Maleki, 9/16Overland Park, KS 40353605 (3.0) $7^9 - 2 \times 1$ Iris Behm, 3/14Lenexa, KS 40353610 (3.2) $7^9 + 2 + 1$ Chryspus Muema, 4/16Olathe, KS 57395628 (3.0) $9^7 \times 12$ Hyun Cheong, 2/14Overland Park, KS 80707213 (3.0) $7^9 \times 2 - 1$ Vamsi, 9/14Visakhapatnam, India 80707214 (3.0) $7^9 \times 2 \times 1$ Hyun Cheong, 2/14Overland Park, KS 80707215 (3.0) $7^9 \times 2 + 1$ Vamsi, 9/14Visakhapatnam, India 100442349 (3.0) $9^7 \times 21$ Hannah Maleki, 11/16Overland Park, KS 200120949 (3.0) $\dfrac{21^7}{9}$ Salvador Aguirre, 10/16Overland Park, KS 282475249 (3.0) $7^{9+2-1}$ Chryspus Muema, 5/16Olathe, KS 322486272 (3.0) $12^7 \times 9$ Hyun Cheong, 2/14Overland Park, KS 387420489 (3.0) $9^{7 + 2} \times 1$ Deborah Kangas, 5/14Lenexa, KS 387420490 (3.0) $9^{7 + 2} + 1$ Andrea Craig, 3/17Olathe, KS 479001679 (3.2) $12! + 79$ Greg Bayer, 8/19Sydney, New South Wales 479001697 (3.2) $12! + 97$ Greg Bayer, 8/19Sydney, New South Wales 484243284 (3.0) $7^9 \times 12$ Deborah Kangas, 5/14Lenexa, KS 594823321 (3.0) $29^{7-1}$ Gregory Bayer, 12/19Sydney, New South Wales 612220033 (3.0) $(9 \times 2)^7 + 1$ Andrea Craig, 3/17Olathe, KS 1801088541 (3.0) $(12 + 9)^7$ Deborah Kangas, 5/14Lenexa, KS 1801088550 (3.0) $21^7 + 9$ Salvador Aguirre, 10/16Overland Park, KS 1977326740 (4.4) $7^{9+2} + \log(1 ‰)$ Vamsi, 11/14Visakhapatnam, India 1977326743 (3.0) $7^{9+2} \times 1$ Steve Wilson, 9/20Lawrence, KS 3486784401 (3.0) $9^{7+2+1}$ Chryspus Muema, 5/16Olathe, KS 3657830399 (3.4) $9! \times 7! \times 2 - 1$ Vamsi, 10/14Visakhapatnam, India 3657830400 (3.4) $9! \times 7! \times 2 \times 1$ Catherine Weinman, 7/13Perth, Western Australia 3657830401 (3.4) $9! \times 7! \times 2 + 1$ Catherine Weinman, 6/13Perth, Western Australia 38443359375 (3.0) $(7 \times 2 + 1)^9$ Travis MacClendon, 1/14Blountstown, FL 594467302491009 (3.0) $129^7$ Vamsi, 9/14Visakhapatnam, India 4611686018427387904 (3.0) $2^{(9 \times 7 - 1)}$ Adam Shafton, 4/16Overland Park, KS 9223372036854775808 (3.0) $2^{(9 \times 7 \times 1)}$ Adam Shafton, 4/16Overland Park, KS 18446744073709551616 (3.0) $2^{(9 \times 7 + 1)}$ Adam Shafton, 4/16Overland Park, KS

Page 1 (1-400), Page 2 (401+).