$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\arcsec} {arcsec} \DeclareMathOperator {\artanh} {artanh}$

## Integermania!

#### Zip 66210

The zip code 66210 corresponds to a portion of Overland Park, Kansas. Create each of the positive integers using two copies of 6, one copy of 2, one copy of 1, one copy of 0, and any standard operations. All five numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

 801 (3.2) $\dfrac{6+2}{1\%} + 6^0$ Steve Wilson, 8/10Raytown, MO 802 (2.8) $\dfrac{6}{.6\%} - \dfrac{2}{.\overline{01}}$ Steve Wilson, 8/10Raytown, MO 803 (2.0) $\dfrac{1606}{2}$ Steve Wilson, 8/10Raytown, MO 804 (2.4) $1206 \times .\overline{6}$ Steve Wilson, 8/10Raytown, MO 805 (3.4) $\dfrac{6+2}{1\%} + 6 - 0!$ Steve Wilson, 8/10Raytown, MO 806 (2.2) $\dfrac{6+2}{1\%} + 6 + 0$ Steve Wilson, 5/10Raytown, MO 807 (2.8) $\dfrac{ \dfrac{6}{.0\overline{1}} -2}{.\overline{6}}$ Steve Wilson, 8/10Raytown, MO 808 (2.8) $\dfrac{6}{.0\overline{1} \times .\overline{6}} - 2$ Steve Wilson, 8/10Raytown, MO 809 (3.6) $\left( \dfrac{6}{0.\overline{6}\%} \right)^2 \pm - 1$ Steve Wilson, 8/10Raytown, MO 810 (2.8) $\dfrac{1}{.\overline{6} \times .2\%} + 60$ Steve Wilson, 5/10Raytown, MO 811 (3.6) $\left( \dfrac{6}{0.\overline{6}\%} \right)^2 \pm + 1$ Steve Wilson, 8/10Raytown, MO 812 (2.8) $\dfrac{6}{.0\overline{1} \times .\overline{6}} + 2$ Steve Wilson, 8/10Raytown, MO 813 (2.8) $\dfrac{ \dfrac{6}{.0\overline{1}} +2}{.\overline{6}}$ Steve Wilson, 8/10Raytown, MO 814 (3.2) $6! + 10^2 - 6$ Steve Wilson, 8/10Raytown, MO 815 (2.8) $\dfrac{ \dfrac{1}{.\overline{20}\%} -6}{.6}$ Steve Wilson, 8/10Raytown, MO 816 (3.2) $6! + 102 - 6$ Steve Wilson, 8/23Lawrence, KS 817 (3.6) $6! + \dfrac{0!}{1\%} - \dfrac62$ Steve Wilson, 8/10Raytown, MO 818 (3.8) $6! + \dfrac{0!}{1\%} - \sqrt{6-2}$ Steve Wilson, 8/10Raytown, MO 819 (2.6) $\dfrac{1}{2\% \times .\overline{06}} - 6$ Steve Wilson, 8/10Raytown, MO 820 (2.8) $\dfrac{6}{.6\%} - \dfrac{2}{.0\overline{1}}$ Steve Wilson, 5/10Raytown, MO 821 (3.8) $6! + \dfrac{(2+1)!}{6\%} + 0!$ Steve Wilson, 8/10Raytown, MO 822 (2.6) $\dfrac{ \dfrac{1}{.\overline{06}\%} -6}{2}$ Steve Wilson, 8/10Raytown, MO 823 (2.4) $\dfrac{6-1}{.\overline{60}\%} - 2$ Steve Wilson, 8/10Raytown, MO 824 (2.6) $\dfrac{ \dfrac{1}{.\overline{02}\%} -6}{6}$ Steve Wilson, 8/10Raytown, MO 825 (2.2) $\dfrac{66}{0.1-2\%}$ Steve Wilson, 8/10Raytown, MO 826 (2.6) $\dfrac{ \dfrac{1}{.\overline{02}\%} +6}{6}$ Steve Wilson, 8/10Raytown, MO 827 (2.4) $\dfrac{6-1}{.\overline{60}\%} + 2$ Steve Wilson, 8/10Raytown, MO 828 (2.6) $\dfrac{ \dfrac{1}{.\overline{06}\%} +6}{2}$ Steve Wilson, 8/10Raytown, MO 829 (3.4) $\dfrac{166}{.2} - 0!$ Steve Wilson, 8/10Raytown, MO 830 (2.0) $\dfrac{166}{0.2}$ Steve Wilson, 8/10Raytown, MO 831 (2.6) $\dfrac{1}{2\% \times .\overline{06}} + 6$ Steve Wilson, 8/10Raytown, MO 832 (3.6) $6! + \dfrac{0!}{1\%} + 6 \times 2$ Steve Wilson, 8/10Raytown, MO 833 (2.6) $\dfrac{ \dfrac{1}{6\%\%} -0.\overline{6}}{2}$ Steve Wilson, 8/10Raytown, MO 834 (2.6) $\dfrac{1}{2\% \times 6\%} + 0.\overline{6}$ Steve Wilson, 8/10Raytown, MO 835 (2.6) $\dfrac{1+0.2\%}{(6+6)\%\%}$ Steve Wilson, 8/10Raytown, MO 836 (3.6) $\dfrac{0!-.2}{1\pmf} + 6 \times 6$ Steve Wilson, 8/10Raytown, MO 837 (2.6) $\dfrac{62}{0.\overline{1} \times .\overline{6}}$ Steve Wilson, 8/10Raytown, MO 838 (3.4) $6! + (6 - 1)! - 2 + 0$ Steve Wilson, 8/23Lawrence, KS 839 (3.4) $6! + 20 \times 6 - 1$ Steve Wilson, 8/23Lawrence, KS 840 (2.0) $(16 - 2) \times 60$ Steve Wilson, 5/10Raytown, MO 841 (3.2) $6! + 20 \times 6 + 1$ Steve Wilson, 8/23Lawrence, KS 842 (3.4) $6! + (6 - 1)! + 2 + 0$ Steve Wilson, 8/10Raytown, MO 843 (3.6) $6! + (6 - 1)! + 2 + 0!$ Steve Wilson, 8/10Raytown, MO 844 (3.4) $\dfrac{16+0!}{2\%} - 6$ Steve Wilson, 8/10Raytown, MO 845 (3.4) $6! + 126 - 0!$ Steve Wilson, 8/23Lawrence, KS 846 (3.2) $6! + 126 + 0$ Steve Wilson, 8/23Lawrence, KS 847 (3.4) $6! + 126 + 0!$ Steve Wilson, 8/23Lawrence, KS 848 (2.0) $106 \times (6 + 2)$ Steve Wilson, 8/10Raytown, MO 849 (3.4) $(2 + 0!)^6 + (6 - 1)!$ Steve Wilson, 8/10Raytown, MO 850 (2.2) $\dfrac{102}{(6+6)\%}$ Steve Wilson, 8/10Raytown, MO 851 (3.8) $\dfrac{1+2\%}{(6+6)\%\%} + 0!$ Steve Wilson, 9/10Raytown, MO 852 (3.6) $6! + (6 - 0!)! + 12$ Steve Wilson, 8/10Raytown, MO 853 (3.6) $\dfrac{16+0!+6\%}{2\%}$ Steve Wilson, 8/10Raytown, MO 854 (2.0) $61 \times (20 - 6)$ Steve Wilson, 8/10Raytown, MO 855 (2.8) $\dfrac{ \dfrac{1}{.\overline{60}\%} +6}{.2}$ Steve Wilson, 8/10Raytown, MO 856 (3.4) $\dfrac{16+0!}{2\%} + 6$ Steve Wilson, 8/10Raytown, MO 857 (3.4) $6! \times 1.2 - 6 - 0!$ Steve Wilson, 8/10Raytown, MO 858 (2.6) $\dfrac{6.\overline{6} +2}{.\overline{01}}$ Steve Wilson, 8/10Raytown, MO 859 (3.4) $6! \times 1.2 - 6 + 0!$ Douglas Shamlin Jr., 1/17Highland, MD 860 (2.2) $\dfrac{6+2}{1\%} + 60$ Steve Wilson, 5/10Raytown, MO 861 (3.6) $\dfrac{6.6+2+0!\%}{1\%}$ Steve Wilson, 8/10Raytown, MO 862 (3.6) $\dfrac{6!^2 \%}{6} - 1 - 0!$ Steve Wilson, 8/10Raytown, MO 863 (3.2) $6! \times 1.2 - 6^0$ Steve Wilson, 8/10Raytown, MO 864 (3.2) $6! \times 1.2 + 6 \times 0$ Steve Wilson, 8/10Raytown, MO 865 (2.8) $\dfrac{6-.1}{.\overline{6}\%} - 20$ Steve Wilson, 8/10Raytown, MO 866 (3.6) $\dfrac{0!-.2}{1\pmf} + 66$ Steve Wilson, 8/10Raytown, MO 867 (3.8) $6! \times (6 - 0!)!\% + 2 + 1$ Steve Wilson, 3/11Raytown, MO 868 (3.8) $\dfrac{6}{.\overline{6}\%} - \sqrt{2^{10}}$ Steve Wilson, 9/10Raytown, MO 869 (2.6) $\dfrac{6-0.2}{.\overline{6}\%} - 1$ Steve Wilson, 8/10Raytown, MO 870 (2.6) $\dfrac{6}{1\%} + \dfrac{60}{.\overline{2}}$ Steve Wilson, 5/10Raytown, MO 871 (2.6) $\dfrac{6-0.2}{.\overline{6}\%} + 1$ Steve Wilson, 8/10Raytown, MO 872 (4.0) $\dfrac{6-.2}{.\overline{6}\%} + 1 + 0!$ Steve Wilson, 9/10Raytown, MO 873 (2.8) $\dfrac{ \dfrac{6}{.\overline{06}} -2}{.\overline{1}}$ Steve Wilson, 8/10Raytown, MO 874 (3.4) $\dfrac{6!^2 \%}{6} + 10$ Steve Wilson, 8/10Raytown, MO 875 (2.2) $\dfrac{20-6}{1.6\%}$ Steve Wilson, 8/10Raytown, MO 876 (3.6) $\dfrac{0!-6\%}{1\pmf} - 2^6$ Steve Wilson, 8/10Raytown, MO 877 (4.8) $6! + 160 - \coth\ln\sqrt{2}$ Steve Wilson, 8/23Lawrence, KS 878 (3.2) $6! + 160 - 2$ Steve Wilson, 8/23Lawrence, KS 879 (2.4) $\dfrac{6}{0.\overline{6}\%} - 21$ Steve Wilson, 8/10Raytown, MO 880 (2.4) $\dfrac{6}{.6\%} - 120$ Steve Wilson, 5/10Raytown, MO 881 (2.6) $\dfrac{6}{.\overline{6}\%} - 20 + 1$ Steve Wilson, 8/10Raytown, MO 882 (2.4) $\dfrac{ \dfrac{6}{6\%} -2}{0.\overline{1}}$ Steve Wilson, 8/10Raytown, MO 883 (2.6) $\dfrac{6-0.1}{.\overline{6}\%} - 2$ Steve Wilson, 8/10Raytown, MO 884 (3.8) $\dfrac{6-.1}{.\overline{6}\%} - 2^0$ Steve Wilson, 8/10Raytown, MO 885 (2.4) $\dfrac{61-2}{.0\overline{6}}$ Steve Wilson, 8/10Raytown, MO 886 (3.8) $\dfrac{6-.1}{.\overline{6}\%} + 2^0$ Steve Wilson, 8/10Raytown, MO 887 (2.6) $\dfrac{6-0.1}{.\overline{6}\%} + 2$ Steve Wilson, 8/10Raytown, MO 888 (2.4) $\dfrac{6}{0.\overline{6}\%} - 12$ Steve Wilson, 5/10Raytown, MO 889 (2.8) $\dfrac{6}{.\overline{01} \times .\overline{6}} - 2$ Steve Wilson, 8/10Raytown, MO 890 (3.8) $\dfrac{6}{.\overline{6}\%} - \sqrt{10^2}$ Steve Wilson, 8/10Raytown, MO 891 (2.4) $\dfrac{6+ \dfrac62}{.\overline{01}}$ Steve Wilson, 8/10Raytown, MO 892 (2.6) $\dfrac{6}{.\overline{6}\%} - 10 + 2$ Steve Wilson, 8/10Raytown, MO 893 (2.8) $\dfrac{6}{.\overline{01} \times .\overline{6}} + 2$ Steve Wilson, 8/10Raytown, MO 894 (2.6) $\dfrac{6}{.\overline{01}} + \dfrac{6}{2\%}$ Steve Wilson, 8/10Raytown, MO 895 (2.6) $\dfrac{6}{0.\overline{6}\%} - \dfrac{1}{.2}$ Steve Wilson, 8/10Raytown, MO 896 (2.6) $\dfrac{6-2\%}{0.\overline{6}\%} - 1$ Steve Wilson, 8/10Raytown, MO 897 (2.4) $\dfrac{6}{0.\overline{6}\%} - 2 - 1$ Steve Wilson, 8/10Raytown, MO 898 (2.4) $\dfrac{6}{0.\overline{6}\%} - 2 \times 1$ Steve Wilson, 8/10Raytown, MO 899 (2.4) $\dfrac{6}{0.\overline{6}\%} - 2 + 1$ Steve Wilson, 8/10Raytown, MO 900 (2.4) $\dfrac{6+6-2}{.0\overline{1}}$ Steve Wilson, 5/10Raytown, MO 901 (2.2) $601 + \dfrac{6}{2\%}$ Steve Wilson, 4/09Raytown, MO 902 (2.4) $\dfrac{6}{0.\overline{6}\%} + 2 \times 1$ Steve Wilson, 8/10Raytown, MO 903 (2.4) $\dfrac{6}{0.\overline{6}\%} + 2 + 1$ Steve Wilson, 8/10Raytown, MO 904 (2.4) $\dfrac{602}{.\overline{6}} + 1$ Steve Wilson, 8/10Raytown, MO 905 (2.6) $\dfrac{6}{0.\overline{6}\%} + \dfrac{1}{.2}$ Steve Wilson, 8/10Raytown, MO 906 (3.6) $\dfrac{6}{0.\overline{6}\%} + (2 + 1)!$ Steve Wilson, 8/10Raytown, MO 907 (2.8) $\dfrac{6-2\%}{.\overline{6}\%} + 10$ Steve Wilson, 8/10Raytown, MO 908 (2.6) $\dfrac{6}{.\overline{6}\%} + 10 - 2$ Steve Wilson, 8/10Raytown, MO 909 (2.8) $\dfrac{ \dfrac{6}{.\overline{06}} +2}{.\overline{1}}$ Steve Wilson, 8/10Raytown, MO 910 (2.2) $610 + \dfrac{6}{2\%}$ Steve Wilson, 4/09Raytown, MO 911 (3.8) $\dfrac{6}{.\overline{6}\%} + 12 - 0!$ Steve Wilson, 9/10Raytown, MO 912 (2.4) $6\times \left(\dfrac{1}{0.\overline{6}\%} +2\right)$ Steve Wilson, 8/10Raytown, MO 913 (2.4) $\dfrac{61}{.0\overline{6}} - 2$ Steve Wilson, 5/10Raytown, MO 914 (3.4) $6! + \dfrac{2}{1\%} - 6 + 0$ Steve Wilson, 8/10Raytown, MO 915 (2.4) $\dfrac{62-1}{.0\overline{6}}$ Steve Wilson, 8/10Raytown, MO 916 (3.6) $\dfrac{6.1}{.\overline{6}\%} + 2^0$ Steve Wilson, 8/10Raytown, MO 917 (2.4) $\dfrac{61}{.0\overline{6}} + 2$ Steve Wilson, 5/10Raytown, MO 918 (2.2) $\dfrac{612}{0.\overline{6}}$ Steve Wilson, 8/10Raytown, MO 919 (2.6) $\dfrac{6}{.\overline{6}\%} + 20 - 1$ Steve Wilson, 8/10Raytown, MO 920 (2.6) $\dfrac{ \dfrac{6}{.\overline{6}} +0.2}{1\%}$ Steve Wilson, 8/10Raytown, MO 921 (2.4) $\dfrac{6}{0.\overline{6}\%} + 21$ Steve Wilson, 8/10Raytown, MO 922 (3.8) $\dfrac{6}{.\overline{6}\%} + 21 + 0!$ Steve Wilson, 8/10Raytown, MO 923 (4.6) $6! + 206 + \log(1\pm)$ Steve Wilson, 8/23Lawrence, KS 924 (2.6) $\dfrac{ \dfrac{1}{2\%} +6}{.\overline{06}}$ Steve Wilson, 8/10Raytown, MO 925 (2.6) $\dfrac{ \dfrac{1}{.\overline{02}} +6}{6\%}$ Steve Wilson, 8/10Raytown, MO 927 (3.2) $6! + 206 \times 1$ Steve Wilson, 8/23Lawrence, KS 927 (3.2) $6! + 206 + 1$ Steve Wilson, 8/23Lawrence, KS 928 (2.0) $16 \times (60 - 2)$ Steve Wilson, 8/10Raytown, MO 929 (2.4) $\dfrac{62}{.0\overline{6}} - 1$ Steve Wilson, 5/10Raytown, MO 930 (2.4) $\dfrac{62}{.0\overline{6}} \times 1$ Steve Wilson, 5/10Raytown, MO 931 (2.4) $\dfrac{62}{.0\overline{6}} + 1$ Steve Wilson, 5/10Raytown, MO 932 (3.6) $0!\pm^{-1} - 62 - 6$ Steve Wilson, 8/23Lawrence, KS 933 (3.8) $(1\pm^{-2})\pm - 66 - 0!$ Steve Wilson, 8/23Lawrence, KS 934 (3.6) $\sqrt[.1]{2} - \dfrac{60}{.\overline{6}}$ Steve Wilson, 8/10Raytown, MO 935 (2.6) $\dfrac{6.1}{.\overline{6}\%} + 20$ Steve Wilson, 8/10Raytown, MO 936 (3.2) $\sqrt{10^6} - 2^6$ Steve Wilson, 8/10Raytown, MO 937 (3.4) $6! + 216 + 0!$ Steve Wilson, 8/23Lawrence, KS 938 (3.2) $\sqrt{10^6} - 62$ Steve Wilson, 8/10Raytown, MO 939 (3.8) $\sqrt{.1^{-6}} - 62 + 0!$ Steve Wilson, 8/23Lawrence, KS 940 (2.6) $\dfrac{6.2}{.\overline{6}\%} + 10$ Steve Wilson, 8/10Raytown, MO 941 (4.8) $\dfrac{\exp\artanh(.6)}{2\pmf} - 60 + 1$ Steve Wilson, 9/23Lawrence, KS 942 (3.8) $\dfrac{0!-6\%}{1\pmf} + \sqrt{6-2}$ Steve Wilson, 9/10Raytown, MO 943 (3.6) $\dfrac{0!-6\%}{1\pmf} + \dfrac62$ Steve Wilson, 9/10Raytown, MO 944 (3.4) $\dfrac{0!}{1\pmf} - 62 + 6$ Steve Wilson, 8/10Raytown, MO 945 (2.4) $\dfrac{62+1}{.0\overline{6}}$ Steve Wilson, 8/10Raytown, MO 946 (3.6) $\dfrac{0!-6\%}{(2-1)\pmf} + 6$ Steve Wilson, 9/10Raytown, MO 947 (3.0) $\dfrac{.6 - 2\%}{.\overline{06}\%} - 10$ Steve Wilson, 8/23Lawrence, KS 948 (2.0) $(160 - 2) \times 6$ Steve Wilson, 5/10Raytown, MO 949 (3.8) $\dfrac{6-.2-.1}{6\pmf} - 0!$ Steve Wilson, 8/10Raytown, MO 950 (2.2) $\dfrac{60-2-1}{6\%}$ Steve Wilson, 5/10Raytown, MO 951 (3.8) $\dfrac{6-.2-.1}{6\pmf} + 0!$ Steve Wilson, 8/10Raytown, MO 952 (3.4) $(6 + 2) \times ((6 - 1)! - 0!)$ Douglas Shamlin Jr., 1/17Highland, MD 953 (4.6) $\dfrac{6! + 0}{\sinh\ln 2} - 6 - 1$ Steve Wilson, 9/23Lawrence, KS 954 (4.2) $\dfrac{6}{6\pmf} - \dfrac{.1}{.\overline{2}\%} - 0!$ Steve Wilson, 9/10Raytown, MO 955 (2.8) $\dfrac{6}{.6\%} - \dfrac{1}{.0\overline{2}}$ Steve Wilson, 8/10Raytown, MO 956 (2.8) $\dfrac{6-.2}{.\overline{60}\%} - 1$ Steve Wilson, 8/10Raytown, MO 957 (2.6) $\dfrac{ \dfrac{6}{.1} -2}{.\overline{06}}$ Steve Wilson, 8/10Raytown, MO 958 (2.0) $160 \times 6 - 2$ Steve Wilson, 5/10Raytown, MO 959 (3.4) $\sqrt[.1]{2} - 66 + 0!$ Steve Wilson, 8/10Raytown, MO 960 (2.4) $20\times \left( \dfrac{6}{.\overline{1}} -6\right)$ Steve Wilson, 8/10Raytown, MO 961 (3.2) $(6 \times (6 - 1) + 0!)^2$ Steve Wilson, 8/10Raytown, MO 962 (2.0) $160 \times 6 + 2$ Steve Wilson, 5/10Raytown, MO 963 (4.6) $\cot\arctan(1\pm) - 6 \times 6 - 2^0$ Steve Wilson, 8/23Lawrence, KS 964 (3.2) $\sqrt{10^6} - 6^2$ Steve Wilson, 8/10Raytown, MO 965 (2.2) $\dfrac{60-2.1}{6\%}$ Steve Wilson, 8/10Raytown, MO 966 (3.6) $\dfrac{6-21\%}{6\pmf} + 0!$ Steve Wilson, 8/10Raytown, MO 967 (3.4) $\dfrac{0!}{1\pmf} - \dfrac{66}{2}$ Steve Wilson, 8/10Raytown, MO 968 (3.4) $\dfrac{0!}{1\pmf} - 26 - 6$ Steve Wilson, 8/10Raytown, MO 969 (2.6) $\dfrac{6}{.\overline{60}\%} - 21$ Steve Wilson, 8/10Raytown, MO 970 (2.6) $\dfrac{ \dfrac{6}{.\overline{06}} -2}{.1}$ Steve Wilson, 8/10Raytown, MO 971 (3.2) $162 \times 6 - 0!$ Steve Wilson, 8/10Raytown, MO 972 (2.0) $162 \times 6 + 0$ Steve Wilson, 8/10Raytown, MO 973 (3.2) $162 \times 6 + 0!$ Steve Wilson, 8/10Raytown, MO 974 (3.4) $\sqrt{.1^{0-6}} - 26$ Steve Wilson, 8/23Lawrence, KS 975 (2.4) $\dfrac{6+ \dfrac12}{0.\overline{6}\%}$ Steve Wilson, 8/10Raytown, MO 976 (3.8) $\dfrac{6+ \dfrac12}{.\overline{6}\%} + 0!$ Steve Wilson, 8/10Raytown, MO 977 (4.6) $\dfrac{6}{6\pmf} - 20 + \log{(1\pm)}$ Steve Wilson, 9/10Raytown, MO 978 (2.6) $\dfrac{6}{.\overline{60}\%} - 12$ Steve Wilson, 8/10Raytown, MO 979 (2.2) $\dfrac{6}{0.6\%} - 21$ Steve Wilson, 8/10Raytown, MO 980 (2.2) $10\times\left( \dfrac{6}{6\%} -2\right)$ Steve Wilson, 8/10Raytown, MO 981 (2.4) $\dfrac{6}{.6\%} - 20 + 1$ Steve Wilson, 8/10Raytown, MO 982 (2.6) $\dfrac{6}{0.6\%} - \dfrac{2}{.\overline{1}}$ Steve Wilson, 8/10Raytown, MO 983 (2.4) $\dfrac{60-1-2\%}{6\%}$ Steve Wilson, 8/10Raytown, MO 984 (3.8) $\dfrac{6}{.\overline{60}\%} - (2 + 1)!$ Steve Wilson, 8/10Raytown, MO 985 (2.8) $\dfrac{6}{.\overline{60}\%} - \dfrac{1}{.2}$ Steve Wilson, 8/10Raytown, MO 986 (3.4) $\dfrac{0!}{1\pmf} - 6 - 6 - 2$ Steve Wilson, 8/10Raytown, MO 987 (2.6) $\dfrac{6}{.\overline{60}\%} - 2 - 1$ Steve Wilson, 8/10Raytown, MO 988 (2.2) $\dfrac{6}{0.6\%} - 12$ Steve Wilson, 8/10Raytown, MO 989 (2.6) $\dfrac{6}{.\overline{60}\%} - 2 + 1$ Steve Wilson, 8/10Raytown, MO 990 (2.4) $\dfrac{16+6}{.0\overline{2}}$ Steve Wilson, 8/10Raytown, MO 991 (2.6) $\dfrac{6}{.\overline{60}\%} + 2 - 1$ Steve Wilson, 8/10Raytown, MO 992 (2.0) $62 \times 16 + 0$ Steve Wilson, 8/10Raytown, MO 993 (2.6) $\dfrac{6}{.\overline{60}\%} + 2 + 1$ Steve Wilson, 8/10Raytown, MO 994 (3.0) $10^{6/2} - 6$ Douglas Shamlin Jr., 1/17Highland, MD 995 (2.4) $\dfrac{6}{0.6\%} - \dfrac{1}{.2}$ Steve Wilson, 8/10Raytown, MO 996 (3.4) $\dfrac{6}{6\pmf} - 2 - 1 - 0!$ Steve Wilson, 8/10Raytown, MO 997 (2.2) $\dfrac{6}{0.6\%} - 2 - 1$ Steve Wilson, 8/10Raytown, MO 998 (2.2) $\dfrac{6}{0.6\%} - 2 \times 1$ Steve Wilson, 8/10Raytown, MO 999 (2.2) $\dfrac{6}{0.6\%} - 2 + 1$ Steve Wilson, 8/10Raytown, MO 1000 (2.2) $\dfrac{6+6-2}{1\%} + 0$ Steve Wilson, 5/10Raytown, MO 1001 (2.2) $\dfrac{6}{0.6\%} + 2 - 1$ Steve Wilson, 8/10Raytown, MO 1002 (2.0) $\dfrac{6012}{6}$ Steve Wilson, 9/10Raytown, MO 1003 (2.2) $\dfrac{6}{0.6\%} + 2 + 1$ Steve Wilson, 9/10Raytown, MO 1004 (3.4) $\dfrac{6}{6\pmf} + 2 + 1 + 0!$ Steve Wilson, 9/10Raytown, MO 1005 (2.2) $\dfrac{602+1}{.6}$ Steve Wilson, 9/10Raytown, MO 1006 (3.0) $10^{6/2} + 6$ Douglas Shamlin Jr., 1/17Highland, MD 1007 (3.6) $\dfrac{6}{6\pmf} + (2 + 1)! + 0!$ Steve Wilson, 9/10Raytown, MO 1008 (2.4) $\dfrac{6}{.6\%} + 10 - 2$ Steve Wilson, 9/10Raytown, MO 1009 (3.8) $\dfrac{6}{6\pmf} + \dfrac{2-0!}{.\overline{1}}$ Steve Wilson, 9/10Raytown, MO 1010 (2.6) $\dfrac{ \dfrac{6}{.\overline{06}} +2}{.1}$ Steve Wilson, 8/10Raytown, MO 1011 (2.6) $\dfrac{6}{.\overline{60}\%} + 21$ Steve Wilson, 9/10Raytown, MO 1012 (2.2) $6\times\left( \dfrac{1}{0.6\%} +2\right)$ Steve Wilson, 9/10Raytown, MO 1013 (3.4) $\dfrac{6}{6\pmf} + 12 + 0!$ Steve Wilson, 9/10Raytown, MO 1014 (3.2) $2^{10} - \dfrac{6}{.6}$ Steve Wilson, 8/23Lawrence, KS 1015 (3.4) $2^{10} - \dfrac{6}{.\overline{6}}$ Steve Wilson, 9/10Raytown, MO 1016 (3.6) $\dfrac{61+2\%}{6\%} - 0!$ Steve Wilson, 9/10Raytown, MO 1017 (2.0) $\dfrac{6102}{6}$ Steve Wilson, 9/10Raytown, MO 1018 (2.6) $\dfrac{6}{0.6\%} + \dfrac{2}{.\overline{1}}$ Steve Wilson, 9/10Raytown, MO 1019 (2.4) $\dfrac{6}{.6\%} + 20 - 1$ Steve Wilson, 9/10Raytown, MO 1020 (2.0) $1026 - 6$ Steve Wilson, 9/10Raytown, MO 1021 (2.2) $\dfrac{6}{0.6\%} + 21$ Steve Wilson, 9/10Raytown, MO 1022 (2.4) $\dfrac{62}{.\overline{06}} - 1$ Steve Wilson, 9/10Raytown, MO 1023 (2.4) $\dfrac{62}{.\overline{06}} \times 1$ Steve Wilson, 9/10Raytown, MO 1024 (2.4) $\dfrac{62}{.\overline{06}} + 1$ Steve Wilson, 9/10Raytown, MO 1025 (2.8) $\dfrac{6.\overline{21}}{.\overline{60}\%}$ Steve Wilson, 9/10Raytown, MO 1026 (2.4) $\dfrac{20\times 6-6}{.\overline{1}}$ Steve Wilson, 9/10Raytown, MO 1027 (3.8) $\dfrac{0!}{1\pmf} + \dfrac{6-.6}{.2}$ Steve Wilson, 9/10Raytown, MO 1028 (3.8) $\dfrac{(6 - 0!)! - 6}{.\overline{1}} + 2$ Douglas Shamlin Jr., 1/17Highland, MD 1029 (3.6) $\sqrt[.1]{2} + \sqrt{6 \times 6} - 0!$ Steve Wilson, 8/23Lawrence, KS 1030 (2.0) $206 \times (6 - 1)$ Steve Wilson, 9/10Raytown, MO 1031 (3.6) $\sqrt[.1]{2} + \sqrt{6 \times 6} + 0!$ Steve Wilson, 8/23Lawrence, KS 1032 (2.0) $1026 + 6$ Steve Wilson, 9/10Raytown, MO 1033 (3.4) $\dfrac{0!}{1\pmf} + \dfrac{66}{2}$ Steve Wilson, 9/10Raytown, MO 1034 (3.2) $2^{10} + \dfrac{6}{.6}$ Steve Wilson, 8/23Lawrence, KS 1035 (2.0) $\dfrac{6210}{6}$ Zach Alholm, 12/06Leawood, KS 1036 (3.0) $2^{10} + 6 + 6$ Steve Wilson, 9/10Raytown, MO 1037 (3.4) $\sqrt[.1]{2} + 6 + 6 + 0!$ Steve Wilson, 8/23Lawrence, KS 1038 (3.4) $\dfrac{0!}{1\pmf} + 6 \times 6 + 2$ Steve Wilson, 9/10Raytown, MO 1039 (4.8) $\sqrt[.1]{2} + 6 + 6 - \log(0!\pm)$ Steve Wilson, 9/23Lawrence, KS 1040 (2.8) $\dfrac{6}{.\overline{60}\%} + \dfrac{1}{2\%}$ Steve Wilson, 9/10Raytown, MO 1042 (4.8) $6 \times (6 + 0!) - \dfrac{\log(1\%)}{2\pmf}$ Steve Wilson, 9/23Lawrence, KS 1044 (2.4) $6 \times \left( \dfrac{2}{.0\overline{1}} - 6 \right)$ Steve Wilson, 8/23Lawrence, KS 1045 (2.8) $\dfrac{6}{.6\%} + \dfrac{1}{.0\overline{2}}$ Steve Wilson, 8/23Lawrence, KS 1046 (3.6) $\dfrac{0! + (6 - 2)\%}{1\pmf} + 6$ Steve Wilson, 9/23Lawrence, KS 1047 (2.6) $\dfrac{6 + 1 - 2\%}{0.\overline{6}\%}$ Douglas Shamlin Jr., 1/17Highland, MD 1048 (2.4) $\dfrac{1 + 6}{0.\overline{6}\%} - 2$ Douglas Shamlin Jr., 12/16Highland, MD 1049 (3.4) $\dfrac{62 + 1}{6\%} - 0!$ Steve Wilson, 8/23Lawrence, KS 1050 (2.2) $\dfrac{62 + 1}{6\%} + 0$ Steve Wilson, 8/23Lawrence, KS 1051 (3.4) $\dfrac{62 + 1}{6\%} + 0!$ Steve Wilson, 8/23Lawrence, KS 1052 (2.4) $\dfrac{1 + 6}{0.\overline{6}\%} + 2$ Douglas Shamlin Jr., 12/16Highland, MD 1053 (2.6) $\dfrac{6 + 1 + 2\%}{0.\overline{6}\%}$ Douglas Shamlin Jr., 1/17Highland, MD 1054 (3.4) $\sqrt[.1]{2} + 6 \times (6 - 0!)$ Steve Wilson, 8/23Lawrence, KS 1056 (2.0) $1062 - 6$ Douglas Shamlin Jr., 12/16Highland, MD 1057 (3.6) $\dfrac{0! + 6\%}{1\pmf} - \dfrac62$ Steve Wilson, 9/23Lawrence, KS 1058 (3.8) $\dfrac{0! + 6\%}{1\pmf} - \sqrt{6 - 2}$ Steve Wilson, 9/23Lawrence, KS 1059 (3.4) $\sqrt[.1]{2} + 6 \times 6 - 0!$ Steve Wilson, 8/23Lawrence, KS 1060 (2.8) $\dfrac{6 + 6 - .\overline{2}}{.0\overline{1}}$ Steve Wilson, 8/23Lawrence, KS 1061 (3.4) $\sqrt[.1]{2} + 6 \times 6 + 0!$ Steve Wilson, 8/23Lawrence, KS 1062 (2.6) $\dfrac{6 + 6 - .2}{.0\overline{1}}$ Steve Wilson, 8/23Lawrence, KS 1063 (3.8) $\sqrt{.1^{-6}} + 62 + 0!$ Steve Wilson, 8/23Lawrence, KS 1064 (2.0) $1066 - 2$ Douglas Shamlin Jr., 1/17Highland, MD 1065 (3.8) $(1\pm^{-2})\pm + 66 - 0!$ Steve Wilson, 8/23Lawrence, KS 1066 (3.4) $\sqrt[.1]{2} + 6 \times (6 + 0!)$ Steve Wilson, 8/23Lawrence, KS 1067 (3.6) $\dfrac{6! - 2}{.\overline{6}} - 10$ Steve Wilson, 8/23Lawrence, KS 1068 (2.0) $1062 + 6$ Douglas Shamlin Jr., 12/16Highland, MD 1069 (4.6) $1066 + \coth\ln\sqrt{2}$ Steve Wilson, 9/23Lawrence, KS 1070 (2.6) $\dfrac{6 + 1}{.\overline{6}\%} + 20$ Steve Wilson, 8/23Lawrence, KS 1071 (3.6) $\dfrac{6! - (2 + 1)!}{0.\overline{6}}$ Steve Wilson, 8/23Lawrence, KS 1072 (2.4) $201 \times (6 - .\overline{6})$ Steve Wilson, 8/23Lawrence, KS 1073 (3.6) $\dfrac{6! + 2}{.\overline{6}} - 10$ Steve Wilson, 8/23Lawrence, KS 1074 (2.4) $\dfrac{20 \times 6}{.\overline{1}} - 6$ Steve Wilson, 8/23Lawrence, KS 1075 (2.6) $\dfrac{60 + \dfrac{1}{.\overline{2}}}{6\%}$ Steve Wilson, 8/23Lawrence, KS 1076 (2.8) $6 \times \left( \dfrac{2}{.0\overline{1}} - .\overline{6} \right)$ Steve Wilson, 8/23Lawrence, KS 1077 (3.4) $\dfrac{6!}{0.\overline{6}} - 2 - 1$ Steve Wilson, 8/23Lawrence, KS 1078 (2.4) $\dfrac{6 + 6}{.0\overline{1}} - 2$ Steve Wilson, 8/23Lawrence, KS 1079 (3.4) $\dfrac{6!}{0.\overline{6}} - 2 + 1$ Steve Wilson, 8/23Lawrence, KS 1080 (2.0) $60 \times (12 + 6)$ Douglas Shamlin Jr., 12/16Highland, MD 1081 (3.4) $\dfrac{6!}{0.\overline{6}} + 2 - 1$ Steve Wilson, 8/23Lawrence, KS 1082 (2.4) $\dfrac{6 + 6}{.0\overline{1}} + 2$ Steve Wilson, 8/23Lawrence, KS 1083 (3.4) $\dfrac{6!}{0.\overline{6}} + 2 + 1$ Steve Wilson, 8/23Lawrence, KS 1084 (2.8) $6 \times \left( \dfrac{2}{.0\overline{1}} + .\overline{6} \right)$ Steve Wilson, 8/23Lawrence, KS 1085 (3.6) $\dfrac{6!}{0.\overline{6}} + \dfrac{1}{.2}$ Steve Wilson, 8/23Lawrence, KS 1086 (2.4) $\dfrac{20 \times 6}{.\overline{1}} + 6$ Steve Wilson, 8/23Lawrence, KS 1087 (3.6) $\dfrac{6! - 2}{.\overline{6}} + 10$ Steve Wilson, 8/23Lawrence, KS 1088 (4.6) $\left(\dfrac{66}{\log(1\%)}\right)^2 - 0!$ Steve Wilson, 9/23Lawrence, KS 1089 (2.4) $\dfrac{16 + 6}{.\overline{02}}$ Steve Wilson, 8/23Lawrence, KS 1090 (3.0) $2^{10} + 66$ Douglas Shamlin Jr., 12/16Highland, MD 1092 (2.4) $2 \times \left( \dfrac{6}{.0\overline{1}} + 6 \right)$ Steve Wilson, 8/23Lawrence, KS 1093 (3.6) $\dfrac{6! + 2}{.\overline{6}} + 10$ Steve Wilson, 8/23Lawrence, KS 1094 (3.6) $\dfrac{6 + \dfrac{1}{.2}}{0!\%} - 6$ Steve Wilson, 8/23Lawrence, KS 1098 (2.4) $\dfrac{62 + 60}{.\overline{1}}$ Steve Wilson, 8/23Lawrence, KS 1100 (2.0) $(61 - 6) \times 20$ Steve Wilson, 8/23Lawrence, KS 1101 (2.6) $\dfrac{6}{.\overline{6}\%} + 201$ Steve Wilson, 8/23Lawrence, KS 1102 (2.4) $\dfrac{6}{.6\%} + 102$ Douglas Shamlin Jr., 12/16Highland, MD 1106 (2.4) $\dfrac{1}{.2\%} + 606$ Steve Wilson, 8/23Lawrence, KS 1109 (2.8) $\dfrac{0.\overline{6}}{6\%\%} - 2.\overline{1}$ Steve Wilson, 8/23Lawrence, KS 1110 (2.6) $\dfrac{10 - 2.6}{.\overline{6}\%}$ Steve Wilson, 8/23Lawrence, KS 1114 (3.6) $\sqrt[.1]{2} + \dfrac{60}{.\overline{6}}$ Steve Wilson, 8/23Lawrence, KS 1116 (2.4) $6 \times \left( \dfrac{2}{.0\overline{1}} + 6 \right)$ Steve Wilson, 8/23Lawrence, KS 1119 (3.8) $\dfrac{6}{6\pmf} + \left(\dfrac{1}{.2}\right)! - 0!$ Steve Wilson, 8/23Lawrence, KS 1120 (2.2) $60 \times \left( \dfrac{1}{6\%} + 2 \right)$ Steve Wilson, 8/23Lawrence, KS 1121 (3.8) $\dfrac{6}{6\pmf} + \left(\dfrac{1}{.2}\right)! + 0!$ Steve Wilson, 8/23Lawrence, KS 1122 (2.6) $\dfrac{ \dfrac{1}{6\%} + 6}{.\overline{02}}$ Steve Wilson, 8/23Lawrence, KS 1123 (3.6) $\sqrt[.1]{2} + \dfrac{6}{.\overline{06}}$ Steve Wilson, 8/23Lawrence, KS 1124 (3.8) $\dfrac{6 + 1}{.6\overline{2}\%} - 0!$ Steve Wilson, 8/23Lawrence, KS 1125 (2.4) $\dfrac{6 + 1}{0.6\overline{2}\%}$ Steve Wilson, 8/23Lawrence, KS 1126 (3.8) $\dfrac{6 + 1}{.6\overline{2}\%} + 0!$ Steve Wilson, 8/23Lawrence, KS 1128 (3.8) $\dfrac{6 \times 2}{0!\%} - 6! \times .1$ Steve Wilson, 8/23Lawrence, KS 1130 (3.6) $\dfrac{6!}{0.\overline{6}} + \dfrac{1}{2\%}$ Steve Wilson, 8/23Lawrence, KS 1134 (2.0) $21 \times (60 - 6)$ Steve Wilson, 8/23Lawrence, KS 1139 (3.4) $\dfrac{6 \times 2}{0!\%} - 61$ Steve Wilson, 8/23Lawrence, KS 1140 (2.2) $\dfrac{20 \times 6 - 6}{.1}$ Steve Wilson, 8/23Lawrence, KS 1141 (3.6) $\dfrac{6 \times 2 - .6}{1\%} + 0!$ Steve Wilson, 8/23Lawrence, KS 1142 (2.8) $\dfrac{.6}{.\overline{1}\%} + 602$ Steve Wilson, 8/23Lawrence, KS 1144 (3.2) $2^{10} + \dfrac{6!}{6}$ Douglas Shamlin Jr., 12/16Highland, MD 1146 (3.8) $\dfrac{6 \times 2}{0!\%} - \dfrac{6}{.\overline{1}}$ Steve Wilson, 8/23Lawrence, KS 1149 (3.8) $\dfrac{6!}{.6} - \dfrac{1}{2\%} - 0!$ Steve Wilson, 8/23Lawrence, KS 1150 (3.4) $\dfrac{6 + 6 - \dfrac{0!}{2}}{1\%}$ Steve Wilson, 8/23Lawrence, KS 1151 (3.8) $\dfrac{6!}{.6} - \dfrac{1}{2\%} + 0!$ Steve Wilson, 8/23Lawrence, KS 1152 (2.4) $6 \times \left( \dfrac{2}{.\overline{01}} - 6 \right)$ Steve Wilson, 8/23Lawrence, KS 1153 (2.6) $\dfrac{6 + 1}{.\overline{60}\%} - 2$ Steve Wilson, 8/23Lawrence, KS 1155 (2.6) $\dfrac{6 + 2 - 1}{.\overline{60}\%}$ Steve Wilson, 8/23Lawrence, KS 1156 (3.2) $(6 \times 6 - 1 - 0!)^2$ Steve Wilson, 8/23Lawrence, KS 1157 (2.6) $\dfrac{6 + 1}{.\overline{60}\%} + 2$ Steve Wilson, 8/23Lawrence, KS 1158 (3.4) $6 \times \left( \dfrac{2}{1\%} - 6 - 0! \right)$ Steve Wilson, 8/23Lawrence, KS 1159 (3.6) $\dfrac{6 - .2}{(6 - 1)\pmf} - 0!$ Steve Wilson, 8/23Lawrence, KS 1160 (2.2) $\dfrac{60 - 2}{(6 - 1)\%}$ Steve Wilson, 8/23Lawrence, KS 1161 (3.6) $\dfrac{6 - .2}{(6 - 1)\pmf} + 0!$ Steve Wilson, 8/23Lawrence, KS 1165 (3.4) $6 \times \left( \dfrac{2}{1\%} - 6 \right) - 0!$ Steve Wilson, 8/23Lawrence, KS 1164 (2.2) $6 \times \left( \dfrac{2}{1\%} - 6 \right) + 0$ Steve Wilson, 8/23Lawrence, KS 1165 (3.4) $6 \times \left( \dfrac{2}{1\%} - 6 \right) + 0!$ Steve Wilson, 8/23Lawrence, KS 1166 (2.8) $\dfrac{6 + 6 - .\overline{2}}{.\overline{01}}$ Steve Wilson, 8/23Lawrence, KS 1167 (2.6) $\dfrac{6 + 1 + 0.2\%}{.6\%}$ Steve Wilson, 8/23Lawrence, KS 1170 (2.0) $6 \times (201 - 6)$ Steve Wilson, 8/23Lawrence, KS 1174 (3.8) $\dfrac{1 - 6\%}{(6 + 2)\%\%} - 0!$ Steve Wilson, 8/23Lawrence, KS 1175 (2.6) $\dfrac{1 - 6\%}{(6 + 2)\%\%} + 0$ Steve Wilson, 8/23Lawrence, KS 1176 (2.4) $2 \times \left( \dfrac{6}{.\overline{01}} - 6 \right)$ Steve Wilson, 8/23Lawrence, KS 1178 (3.6) $\dfrac{6!}{.6} - 21 - 0!$ Steve Wilson, 8/23Lawrence, KS 1179 (3.4) $\dfrac{6 + 6}{0!\%} - 21$ Steve Wilson, 8/23Lawrence, KS 1180 (2.2) $\dfrac{6 + 6 - 0.2}{1\%}$ Steve Wilson, 8/23Lawrence, KS 1181 (3.4) $\dfrac{6!}{.6} - 20 + 1$ Steve Wilson, 8/23Lawrence, KS 1182 (2.4) $\dfrac{6 \times 2}{.\overline{01}} - 6$ Steve Wilson, 8/23Lawrence, KS 1184 (2.8) $6 \times \left( \dfrac{2}{.\overline{01}} - .\overline{6} \right)$ Steve Wilson, 8/23Lawrence, KS 1185 (2.6) $\dfrac{6 + 2 - 0.1}{.\overline{6}\%}$ Steve Wilson, 8/23Lawrence, KS 1186 (2.4) $\dfrac{6 + 6}{.\overline{01}} - 2$ Steve Wilson, 8/23Lawrence, KS 1187 (3.6) $\dfrac{6!}{.6} - 12 - 0!$ Steve Wilson, 8/23Lawrence, KS 1188 (2.8) $2 \times \left( \dfrac{6}{1\%} - 6 \right) + 0$ Steve Wilson, 8/23Lawrence, KS 1189 (3.6) $\dfrac{6!}{.6} - 12 + 0!$ Steve Wilson, 8/23Lawrence, KS 1190 (2.0) $(601 - 6) \times 2$ Douglas Shamlin Jr., 1/17Highland, MD 1191 (2.8) $\dfrac{10 - 2 - 6\%}{.\overline{6}\%}$ Steve Wilson, 8/23Lawrence, KS 1192 (2.8) $6 \times \left( \dfrac{2}{.\overline{01}} + .\overline{6} \right)$ Steve Wilson, 8/23Lawrence, KS 1193 (3.4) $\dfrac{6 \times 2}{1\%} - 6 - 0!$ Steve Wilson, 8/23Lawrence, KS 1194 (2.2) $\dfrac{6 \times 2}{1\%} - 6 + 0$ Douglas Shamlin Jr., 1/17Highland, MD 1195 (3.4) $\dfrac{6 \times 2}{1\%} - 6 + 0!$ Steve Wilson, 8/23Lawrence, KS 1196 (2.0) $601 \times 2 - 6$ Kevin Solecki, 8/08Olathe, KS 1197 (3.4) $\dfrac{6 + 6}{1\%} - 2 - 0!$ Steve Wilson, 8/23Lawrence, KS 1198 (2.2) $\dfrac{6 + 6}{1\%} - 2 + 0$ Steve Wilson, 8/23Lawrence, KS 1199 (2.4) $\dfrac{6 + 2}{0.\overline{6}\%} - 1$ Douglas Shamlin Jr., 1/17Highland, MD 1200 (2.0) $1206 - 6$ Suzanne Williams, 5/07Overland Park, KS