$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

## Integermania!

#### Dave's Birthday

The digits of the birthday of Integermaniac master Dave Jones are 1, 7, 7, and 8. Create each of the positive integers using one copy of each number, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).

 1 (1.0) $8 \times (7 - 7) + 1$ Dave Jones, 1/07Coventry, England 2 (1.0) $\dfrac{8+7-1}{7}$ Dave Jones, 1/07Coventry, England 3 (2.0) $\dfrac{17+7}{8}$ Ralph Jeffords, 4/07Centreville, VA 4 (1.0) $\dfrac{8}{ \dfrac77 + 1}$ Dave Jones, 1/07Coventry, England 5 (1.0) $7 + 7 - 8 - 1$ Dave Jones, 1/07Coventry, England 6 (1.0) $\dfrac{7 \times 7 - 1}{8}$ Dave Jones, 1/07Coventry, England 7 (1.0) $7 + 7 - 8 + 1$ Steve Wilson, 1/07Raytown, MO 8 (1.0) $8 \times 1 + 7 - 7$ Steve Wilson, 1/07Raytown, MO 9 (1.0) $8 + 1 + 7 - 7$ Steve Wilson, 1/07Raytown, MO 10 (1.0) $8 + 1 + \dfrac77$ Steve Wilson, 1/07Raytown, MO 11 (2.0) $\dfrac{77}{8-1}$ Brad Anderson, 2/07Overland Park, KS 12 (2.2) $.8 \times (1 + 7 + 7)$ Ralph Jeffords, 4/07Centreville, VA 13 (2.0) $\dfrac{78}{7-1}$ Dave Jones, 4/07Coventry, England 14 (1.0) $7 \times (1 - 7 + 8)$ Ralph Jeffords, 2/07Centreville, VA 15 (1.0) $7 \times \left( \dfrac87 + 1 \right)$ Steve Wilson, 2/07Raytown, MO 16 (1.0) $8 \times \left( \dfrac77 + 1 \right)$ Steve Wilson, 1/07Raytown, MO 17 (2.0) $18 - \dfrac77$ Carolyn Neptune, 1/07Prairie Village, KS 18 (2.0) $18 - 7 + 7$ Ashley Barboza, 1/07Overland Park, KS 19 (2.0) $18 + \dfrac77$ Carolyn Neptune, 1/07Prairie Village, KS 20 (2.2) $\dfrac{8+7-1}{.7}$ Steve Wilson, 2/07Raytown, MO 21 (1.0) $7 + 7 + 8 - 1$ Carolyn Neptune, 1/07Prairie Village, KS 22 (1.0) $1 \times (7 + 7 + 8)$ Carolyn Neptune, 1/07Prairie Village, KS 23 (1.0) $7 + 7 + 8 + 1$ Carolyn Neptune, 1/07Prairie Village, KS 24 (2.4) $87 - \dfrac{7}{.\overline{1}}$ Ralph Jeffords, 2/07Centreville, VA 25 (2.2) $\dfrac{1 + \dfrac77}{8\%}$ Steve Wilson, 4/07Raytown, MO 26 (2.2) $\dfrac{7.8}{1-.7}$ Steve Wilson, 4/07Raytown, MO 27 (2.4) $18 + \dfrac{7}{.\overline{7}}$ Ralph Jeffords, 2/07Centreville, VA 28 (2.2) $18 + \dfrac{7}{.7}$ Carolyn Neptune, 2/07Prairie Village, KS 29 (2.2) $\dfrac{8.7}{1-.7}$ Dave Jones, 6/07Coventry, England 30 (2.2) $\dfrac{17+7}{.8}$ Steve Wilson, 2/07Raytown, MO 31 (2.0) $7 \times 7 - 18$ Brad Anderson, 1/07Overland Park, KS 32 (2.0) $17 + 7 + 8$ Brad Anderson, 1/07Overland Park, KS 33 (2.4) $\dfrac{7}{1-.\overline{78}}$ Dave Jones, 6/07Coventry, England 34 (1.0) $7 \times (7 - 1) - 8$ Brad Anderson, 1/07Overland Park, KS 35 (2.4) $\dfrac{.7}{(8-7+1)\%}$ Steve Wilson, 3/07Raytown, MO 36 (2.4) $\dfrac{8}{1-.7\overline{7}}$ Ralph Jeffords, 5/07Centreville, VA 37 (3.6) $\dfrac{8}{\sqrt{7.\overline{1}\%}} + 7$ Ralph Jeffords, 10/08Centreville, VA 38 (2.4) $\dfrac{8}{.1\overline{7}} - 7$ Ralph Jeffords, 5/07Centreville, VA 39 (2.0) $7 \times 8 - 17$ Dave Jones, 4/07Coventry, England 40 (1.0) $7 \times 7 - 8 - 1$ Brad Anderson, 1/07Overland Park, KS 41 (1.0) $7 \times 7 - 8 \times 1$ Brad Anderson, 1/07Overland Park, KS 42 (1.0) $7 \times 7 - 8 + 1$ Brad Anderson, 2/07Overland Park, KS 43 (2.4) $\dfrac{8}{1-.\overline{7}} + 7$ Steve Wilson, 4/07Raytown, MO 44 (2.2) $7 \times \left( \dfrac{1}{7\%} - 8 \right)$ Steve Wilson, 5/07Raytown, MO 45 (2.4) $\dfrac{8}{.17\overline{7}}$ Ralph Jeffords, 5/07Centreville, VA 46 (2.2) $7 \times \left( 8 - \dfrac{1}{.7} \right)$ Steve Wilson, 5/07Raytown, MO 47 (2.4) $7 \times \left( 8 - \dfrac{1}{.\overline{7}} \right)$ Steve Wilson, 5/07Raytown, MO 48 (1.0) $(1 + 7) \times 7 - 8$ Dave Jones, 2/07Coventry, England 49 (1.0) $1 \times 7 \times 8 - 7$ Dave Jones, 2/07Coventry, England 50 (1.0) $8 \times 7 - 7 + 1$ Ashley Barboza, 1/07Overland Park, KS 51 (2.4) $(8 - .7) \times 7 - .1$ Steve Wilson, 4/07Raytown, MO 52 (2.4) $\dfrac{8}{.1\overline{7}} + 7$ Ralph Jeffords, 5/07Centreville, VA 53 (3.6) $\dfrac{8}{\sqrt{ 1.\overline{7}\%}} - 7$ Ralph Jeffords, 1/09Centreville, VA 54 (2.4) $\dfrac{7+7-8}{.\overline{1}}$ Steve Wilson, 5/07Raytown, MO 55 (1.0) $8 \times (7 - 1) + 7$ Dave Jones, 4/07Coventry, England 56 (1.0) $7 \times 7 + 8 - 1$ Dave Jones, 2/07Coventry, England 57 (1.0) $7 \times 7 + 8 \times 1$ Dave Jones, 2/07Coventry, England 58 (1.0) $7 \times 7 + 8 + 1$ Dave Jones, 2/07Coventry, England 59 (2.0) $77 - 18$ Steve Wilson, 3/07Raytown, MO 60 (2.2) $\dfrac{7+7-8}{.1}$ Steve Wilson, 2/07Raytown, MO 61 (2.0) $78 - 17$ Dave Jones, 6/07Coventry, England 62 (1.0) $7 \times 8 + 7 - 1$ Carolyn Neptune, 2/07Prairie Village, KS 63 (1.0) $7 \times 8 \times 1 + 7$ "mathwhiz", 1/07Newton, MA 64 (1.0) $7 \times 8 + 7 + 1$ Carolyn Neptune, 2/07Prairie Village, KS 65 (2.4) $7 \times \left( \dfrac{1}{.\overline{7}} + 8 \right)$ Dave Jones, 6/07Coventry, England 66 (2.2) $\dfrac{8}{.1} - 7 - 7$ Ralph Jeffords, 3/07Centreville, VA 67 (2.0) $81 - 7 - 7$ Ashley Barboza, 1/07Overland Park, KS 68 (2.0) $77 - 8 - 1$ Carolyn Neptune, 3/07Prairie Village, KS 69 (2.0) $77 - 8 \times 1$ Carolyn Neptune, 3/07Prairie Village, KS 70 (1.0) $7 \times (8 + 1) + 7$ Steve Wilson, 2/07Raytown, MO 71 (1.0) $(7 + 1) \times 8 + 7$ Carolyn Neptune, 2/07Prairie Village, KS 72 (2.0) $71 + 8 - 7$ Brad Anderson, 4/07Overland Park, KS 73 (2.0) $7 \times 8 + 17$ Brad Anderson, 3/07Overland Park, KS 74 (3.2) $77 - \sqrt{8+1}$ Steve Wilson, 6/07Raytown, MO 75 (3.2) $\dfrac{7 - 1^7}{8\%}$ Ralph Jeffords, 2/09Centreville, VA 76 (2.4) $\dfrac{1}{.8\%} - 7 \times 7$ Dave Jones, 6/07Coventry, England 77 (2.0) $(18 - 7) \times 7$ Dave Jones, 4/07Coventry, England 78 (2.4) $\dfrac{7}{.\overline{1}} + 7 + 8$ Ralph Jeffords, 3/07Centreville, VA 79 (2.0) $87 - 7 - 1$ Ed Cockman, 2/07Pleasant Hill, MO 80 (2.0) $81 - \dfrac77$ Carolyn Neptune, 2/07Prairie Village, KS 81 (2.0) $81 + 7 - 7$ Ralph Jeffords, 3/07Centreville, VA 82 (2.0) $81 + \dfrac77$ Ed Cockman, 2/07Pleasant Hill, MO 83 (2.8) $\dfrac{.7}{.\overline{7}\%} - 8 + 1$ Dave Jones, 9/07Coventry, England 84 (2.0) $77 + 8 - 1$ Carolyn Neptune, 3/07Prairie Village, KS 85 (2.0) $77 + 8 \times 1$ Ed Cockman, 2/07Pleasant Hill, MO 86 (2.0) $77 + 8 + 1$ Carolyn Neptune, 3/07Prairie Village, KS 87 (2.2) $7 \times \left( \dfrac{8}{.7} + 1 \right)$ Steve Wilson, 6/07Raytown, MO 88 (2.2) $8 \times \left( \dfrac{7}{.7} + 1 \right)$ Steve Wilson, 6/07Raytown, MO 89 (2.6) $\dfrac{8}{.1} + \dfrac{7}{.\overline{7}}$ Steve Wilson, 6/07Raytown, MO 90 (1.0) $(7 + 8) \times (7 - 1)$ Brad Anderson, 2/07Overland Park, KS 91 (2.2) $\dfrac{7}{7\%} - 8 - 1$ Carolyn Neptune, 4/07Prairie Village, KS 92 (2.2) $\dfrac{7}{7\%} - 8 \times 1$ Carolyn Neptune, 5/07Prairie Village, KS 93 (2.0) $87 + 7 - 1$ Carolyn Neptune, 3/07Prairie Village, KS 94 (2.0) $87 + 7 \times 1$ Ralph Jeffords, 3/07Centreville, VA 95 (2.0) $87 + 7 + 1$ Ed Cockman, 2/07Pleasant Hill, MO 96 (3.6) $\dfrac{8! \pmf}{7\% \times (7-1)}$ Paolo Pellegrini, 5/09Martina Franca, Italy 97 (2.8) $\dfrac{.7}{.\overline{7}\%} + 8 - 1$ Dave Jones, 9/07Coventry, England 98 (1.0) $(7 + 7) \times (8 - 1)$ Brad Anderson, 2/07Overland Park, KS 99 (2.4) $\dfrac{7 - 7\%}{(8-1)\%}$ Steve Wilson, 8/07Raytown, MO 100 (2.4) $\dfrac{8}{7\%} - \dfrac{1}{7\%}$ Ralph Jeffords, 4/07Centreville, VA 101 (2.4) $\dfrac{7+7\%}{(8-1)\%}$ Steve Wilson, 8/07Raytown, MO 102 (3.0) $\dfrac{1.7}{(.\overline{7} + .\overline{8})\%}$ Paolo Pellegrini, 5/09Martina Franca, Italy 103 (2.8) $\dfrac{.8}{.\overline{7}\%} + \dfrac17$ Dave Jones, 10/07Coventry, England 104 (1.0) $(7 + 8) \times 7 - 1$ Brad Anderson, 2/07Overland Park, KS 105 (1.0) $(7 + 8) \times 7 \times 1$ Dave Jones, 3/07Coventry, England 106 (1.0) $(7 + 8) \times 7 + 1$ Dave Jones, 3/07Coventry, England 107 (2.2) $\dfrac{7}{7\%} + 8 - 1$ Carolyn Neptune, 4/07Prairie Village, KS 108 (2.2) $\dfrac{7}{7\%} + 8 \times 1$ Carolyn Neptune, 5/07Prairie Village, KS 109 (2.2) $\dfrac{7}{7\%} + 8 + 1$ Carolyn Neptune, 4/07Prairie Village, KS 110 (2.2) $\dfrac{7.7}{(8-1)\%}$ Steve Wilson, 7/07Raytown, MO 111 (1.0) $(7 + 7) \times 8 - 1$ Dave Jones, 3/07Coventry, England 112 (1.0) $(7 + 7) \times 8 \times 1$ Dave Jones, 3/07Coventry, England 113 (1.0) $(7 + 7) \times 8 + 1$ Dave Jones, 3/07Coventry, England 114 (3.8) $\dfrac{.\overline{8} - (1 - .\overline{7})\%}{.\overline{7}\%}$ Paolo Pellegrini, 5/09Martina Franca, Italy 115 (2.6) $\dfrac{1}{.8\%} - \dfrac{7}{.7}$ Carolyn Neptune, 7/07Prairie Village, KS 116 (2.8) $\dfrac{1}{.8\%} - \dfrac{7}{.\overline{7}}$ Steve Wilson, 8/07Raytown, MO 117 (2.8) $\dfrac{78}{.\overline{7} - .\overline{1}}$ Dave Jones, 10/07Coventry, England 118 (2.2) $\dfrac{7}{7\%} + 18$ Carolyn Neptune, 5/07Prairie Village, KS 119 (2.0) $18 \times 7 - 7$ Ed Cockman, 5/07Pleasant Hill, MO 120 (1.0) $(7 + 8) \times (7 + 1)$ Brad Anderson, 3/07Overland Park, KS 121 (2.4) $\dfrac{8}{.\overline{1}} + 7 \times 7$ Steve Wilson, 7/07Raytown, MO 122 (3.8) $\dfrac{1}{8 \pmf} - \sqrt{ \dfrac{7}{.\overline{7}}}$ Steve Wilson, 7/08Raytown, MO 123 (3.6) $\dfrac{7 \times 7 - 8}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 5/09Martina Franca, Italy 124 (2.4) $\dfrac{1}{.8\%} - \dfrac77$ Steve Wilson, 7/07Raytown, MO 125 (2.2) $\dfrac{17-7}{8\%}$ Dave Jones, 9/07Coventry, England 126 (1.0) $(7 + 7) \times (8 + 1)$ Brad Anderson, 3/07Overland Park, KS 127 (2.0) $17 \times 7 + 8$ Brad Anderson, 6/07Overland Park, KS 128 (2.4) $\dfrac{8+7}{.\overline{1}} - 7$ Brad Anderson, 7/07Overland Park, KS 129 (2.0) $17 \times 8 - 7$ Melody Tarbox, 3/07Ottawa, KS 130 (2.0) $7 \times 7 + 81$ Dave Jones, 7/07Coventry, England 131 (3.6) $\dfrac{7!}{8! \pmf} + 7 - 1$ Paolo Pellegrini, 5/09Martina Franca, Italy 132 (2.2) $\dfrac{7+7}{.1} - 8$ Dave Jones, 9/07Coventry, England 133 (2.0) $18 \times 7 + 7$ Brad Anderson, 5/07Overland Park, KS 134 (2.4) $\dfrac{7+7}{.\overline{1}} + 8$ Brad Anderson, 7/07Overland Park, KS 135 (2.6) $\dfrac{1}{.8\%} + \dfrac{7}{.7}$ Carolyn Neptune, 7/07Prairie Village, KS 136 (3.4) $17 \times \dfrac{8!}{7!}$ Carolyn Neptune, 7/07Prairie Village, KS 137 (2.8) $\dfrac{1 + .8\%}{.7\%} - 7$ Dave Jones, 10/07Coventry, England 138 (3.6) $\dfrac{7-1+7! \pmf}{8\%}$ Paolo Pellegrini, 1/10Martina Franca, Italy 139 (2.4) $\dfrac{1}{.8\%} + 7 + 7$ Carolyn Neptune, 7/07Prairie Village, KS 140 (2.2) $18 \times 7.\overline{7}$ Brad Anderson, 8/07Overland Park, KS 141 (2.4) $\dfrac{7}{.\overline{1}} + 78$ Ralph Jeffords, 7/07Centreville, VA 142 (2.4) $\dfrac{8+7}{.\overline{1}} + 7$ Brad Anderson, 7/07Overland Park, KS 143 (2.0) $17 \times 8 + 7$ Brad Anderson, 5/07Overland Park, KS 144 (2.4) $\dfrac{1}{.7\%} + \dfrac87$ Dave Jones, 10/07Coventry, England 145 (2.2) $\dfrac{8.7}{(7-1)\%}$ Steve Wilson, 9/07Raytown, MO 146 (2.8) $7 \times \left( \dfrac{.1}{.\overline{7}\%} + 8 \right)$ Dave Jones, 10/07Coventry, England 147 (3.2) $7 \times 7 \times \sqrt{8+1}$ Carolyn Neptune, 7/07Prairie Village, KS 148 (2.2) $78 + \dfrac{7}{.1}$ Brad Anderson, 5/07Overland Park, KS 149 (2.0) $71 + 78$ Brad Anderson, 4/07Overland Park, KS 150 (2.4) $\dfrac{7}{.\overline{1}} + 87$ Ralph Jeffords, 7/07Centreville, VA 151 (2.8) $\dfrac{1+.8\%}{.7\%} + 7$ Dave Jones, 11/07Coventry, England 152 (3.6) $\dfrac{ \dfrac{7!\%}{7} + 8}{.1}$ Paolo Pellegrini, 1/10Martina Franca, Italy 153 (2.8) $\dfrac{8 + \dfrac{7}{.\overline{7}}}{.\overline{1}}$ Steve Wilson, 9/07Raytown, MO 154 (2.6) $\dfrac{1+7.8\%}{.7\%}$ Dave Jones, 11/07Coventry, England 155 (3.6) $7 \times \dfrac{7}{\sqrt{.\overline{1}}} + 8$ Ralph Jeffords, 1/08Centreville, VA 156 (2.2) $7 \times \left( 8 + \dfrac{1}{7\%} \right)$ Steve Wilson, 9/07Raytown, MO 157 (2.2) $\dfrac{8+7}{.1} + 7$ Brad Anderson, 5/07Overland Park, KS 158 (2.0) $71 + 87$ Brad Anderson, 4/07Overland Park, KS 159 (4.8) $\dfrac{.7}{(\operatorname{csch} \ln 7)\%} - 81$ Steve Wilson, 12/09Raytown, MO 160 (2.6) $\dfrac{.8}{(7 \times 7 + 1)\%\%}$ Steve Wilson, 3/10Raytown, MO 161 (3.6) $8 \times \dfrac{7}{\sqrt{.\overline{1}}} - 7$ Brad Anderson, 8/07Overland Park, KS 162 (2.4) $18 \times \dfrac{7}{.\overline{7}}$ Ralph Jeffords, 9/07Centreville, VA 163 (3.8) $\dfrac{8}{\sqrt{.\overline{1}\%}} - 77$ Ralph Jeffords, 1/09Centreville, VA 164 (4.6) $\log(1 \%\%) \times (8 - 7 \times 7)$ Ralph Jeffords, 2/08Centreville, VA 165 (3.8) $\dfrac{77}{.8 - \sqrt{.\overline{1}}}$ Paolo Pellegrini, 10/08Martina Franca, Italy 166 (4.8) $\dfrac{.7 + \tanh \ln 7}{1^8 \%}$ Steve Wilson, 3/11Raytown, MO 167 (3.6) $\sqrt{ 8! \times .7} - 1^7$ Steve Wilson, 11/08Raytown, MO 168 (3.6) $\sqrt{ 8! \times .7} \times 1^7$ Steve Wilson, 11/08Raytown, MO 169 (2.0) $177 - 8$ Brad Anderson, 5/07Overland Park, KS 170 (2.2) $\dfrac{8.7 - 7}{1\%}$ Dave Jones, 9/07Coventry, England 171 (2.0) $178 - 7$ Brad Anderson, 7/07Overland Park, KS 172 (2.6) $\dfrac{7}{7\%} + \dfrac{8}{.\overline{1}}$ Ralph Jeffords, 7/07Centreville, VA 173 (4.6) $\cot(\arctan(8 \pm)) + 7 \times 7 - 1$ Steve Wilson, 7/08Raytown, MO 174 (2.2) $\dfrac{7+7}{8\%} - 1$ Dave Jones, 11/07Coventry, England 175 (2.0) $7 \times (18 + 7)$ Brad Anderson, 6/07Overland Park, KS 176 (2.2) $\dfrac{7+7}{8\%} + 1$ Steve Wilson, 9/07Raytown, MO 177 (3.6) $\sqrt{ \sqrt{ \sqrt{ 177^8 }}}$ Steve Wilson, 10/07Raytown, MO 178 (4.6) $\dfrac{7+7}{8\%} - \log(1 \pm)$ Steve Wilson, 9/09Raytown, MO 179 (4.0) $\dfrac{7 - .8}{\sqrt{.\overline{1}\%}} - 7$ Ralph Jeffords, 2/09Centreville, VA 180 (2.0) $187 - 7$ Dave Jones, 7/07Coventry, England 181 (2.2) $\dfrac{7}{7\%} + 81$ Brad Anderson, 6/07Overland Park, KS 182 (3.6) $78 \times 7 \times \sqrt{.\overline{1}}$ Paolo Pellegrini, 8/08Martina Franca, Italy 183 (4.0) $7! \times \sqrt{.\overline{1}\%} + 8 + 7$ Paolo Pellegrini, 10/08Martina Franca, Italy 184 (4.8) $8 \times (7 + 7 + \cot \arctan .\overline{1})$ Steve Wilson, 3/11Raytown, MO 185 (2.0) $177 + 8$ Brad Anderson, 7/07Overland Park, KS 186 (4.2) $\dfrac{ \sqrt{7 \times 7} - .8}{\sqrt{.\overline{1}\%}}$ Steve Wilson, 2/09Raytown, MO 187 (4.6) $\dfrac{7}{(\cosh \ln 7)\%} - 8 - 1$ Steve Wilson, 3/11Raytown, MO 188 (3.6) $\dfrac{7 - 7!\pmf}{1\%} - 8$ Paolo Pellegrini, 8/08Martina Franca, Italy 189 (3.6) $\dfrac{8 \times 7 + 7}{\sqrt{.\overline{1}}}$ Steve Wilson, 9/09Raytown, MO 190 (3.4) $\dfrac{.8 + .\overline{7} - .1}{.\overline{7}\%}$ Paolo Pellegrini, 8/08Martina Franca, Italy 191 (3.8) $\dfrac{8}{\sqrt{.\overline{1}\%}} - 7 \times 7$ Ralph Jeffords, 3/09Centreville, VA 192 (2.0) $(17 + 7) \times 8$ Dave Jones, 8/07Coventry, England 193 (2.8) $\dfrac{1.\overline{7}}{.\overline{8}\%} - 7$ Dave Jones, 11/07Coventry, England 194 (2.0) $187 + 7$ Dave Jones, 8/07Coventry, England 195 (3.4) $\sqrt{ \sqrt{ (7+7)^8 }} - 1$ Steve Wilson, 11/07Raytown, MO 196 (3.4) $\sqrt{ \sqrt{ (7+7)^8 }} \times 1$ Steve Wilson, 11/07Raytown, MO 197 (3.4) $\sqrt{ \sqrt{ (7+7)^8 }} + 1$ Steve Wilson, 11/07Raytown, MO 198 (2.4) $\dfrac{8 + 7 + 7}{.\overline{1}}$ Ralph Jeffords, 9/07Centreville, VA 199 (4.0) $\dfrac{8!}{7} \times \sqrt{.\overline{1}\%} + 7$ Steve Wilson, 10/08Raytown, MO 200 (2.2) $\dfrac{8 + 7 - 1}{7\%}$ Carolyn Neptune, 6/07Prairie Village, KS 201 (4.4) $8 \times 7 \times \cosh\ln 7 + 1$ Steve Wilson, 5/08Raytown, MO 202 (2.4) $\dfrac{1}{.8\%} + 77$ Ralph Jeffords, 9/07Centreville, VA 203 (3.4) $\dfrac{.\overline{8} + .7 - 1\%}{.\overline{7}\%}$ Paolo Pellegrini, 8/08Martina Franca, Italy 204 (3.6) $\dfrac{7-7!\pmf}{1\%} + 8$ Paolo Pellegrini, 9/08Martina Franca, Italy 205 (4.6) $\dfrac{7}{(\cosh \ln 7)\%} + 8 + 1$ Steve Wilson, 3/11Raytown, MO 206 (4.4) $78 - (\log(1\%))^7$ Steve Wilson, 3/11Raytown, MO 207 (2.8) $\dfrac{1.\overline{7}}{.\overline{8}\%} + 7$ Dave Jones, 12/07Coventry, England 208 (3.4) $78 \times \sqrt{7.\overline{1}}$ Paolo Pellegrini, 9/08Martina Franca, Italy 209 (3.6) $\sqrt{ \dfrac{7! \times 7}{.8}} - 1$ Paolo Pellegrini, 9/08Martina Franca, Italy 210 (2.8) $\dfrac{7}{.8\overline{1} - .\overline{7}}$ Dave Jones, 12/07Coventry, England 211 (3.6) $\sqrt{ \dfrac{7! \times 7}{.8}} + 1$ Paolo Pellegrini, 9/08Martina Franca, Italy 212 (4.0) $\dfrac{8-.7}{\sqrt{.\overline{1}\%}} - 7$ Steve Wilson, 9/09Raytown, MO 213 (3.6) $\dfrac{78-7}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 3/09Martina Franca, Italy 214 (4.0) $\sqrt{7^8} - \sqrt{ .\overline{1}^{-7}}$ Paolo Pellegrini, 10/09Martina Franca, Italy 215 (3.2) $\dfrac{1}{.8\%} + \dfrac{.7}{.\overline{7}\%}$ Steve Wilson, 11/07Raytown, MO 216 (4.0) $\dfrac{7}{.\overline{7}} \times \dfrac{8}{\sqrt{.\overline{1}}}$ Ralph Jeffords, 2/08Centreville, VA 217 (3.6) $7 \times \left( \dfrac{8}{\sqrt{.\overline{1}}} + 7 \right)$ Paolo Pellegrini, 9/08Martina Franca, Italy 218 (2.6) $\dfrac{7}{.\overline{1} - 8\%} - 7$ Steve Wilson, 10/07Raytown, MO 219 (4.2) $\sqrt{ \dfrac{8!}{.7}} - \dfrac{7}{\sqrt{.\overline{1}}}$ Steve Wilson, 11/08Raytown, MO 220 (2.2) $\dfrac{8+7+7}{.1}$ Dave Jones, 12/07Coventry, England 221 (4.8) $17 \times \left(7 + \left(\sec\arctan \sqrt{8} \right)! \right)$ Steve Wilson, 2/10Raytown, MO 222 (4.8) $\dfrac{.7}{( \operatorname{csch} \ln 7)\%} - 18$ Steve Wilson, 12/09Raytown, MO 223 (3.0) $\dfrac{1.\overline{7}}{.8\%} + .\overline{7}$ Paolo Pellegrini, 10/08Martina Franca, Italy 224 (3.4) $7 \times \sqrt[1-.7]{\sqrt{8}}$ Paolo Pellegrini, 10/08Martina Franca, Italy 225 (2.6) $\dfrac{1 + \dfrac77}{.\overline{8}\%}$ Dave Jones, 12/07Coventry, England 226 (3.8) $\dfrac{8}{\sqrt{.\overline{1}\%}} - 7 - 7$ Paolo Pellegrini, 10/08Martina Franca, Italy 227 (3.6) $\dfrac{78}{\sqrt{.\overline{1}}} - 7$ Ralph Jeffords, 1/09Centreville, VA 228 (4.8) $-\log(1\%\%) \times (7 \times 7 + 8)$ Ralph Jeffords, 2/08Centreville, VA 229 (5.2) $\sqrt{ \dfrac{8!}{.7}} - 7 + \log(1\%\%)$ Steve Wilson, 11/09Raytown, MO 230 (2.8) $\dfrac{1.7\overline{8}}{.\overline{7}\%}$ Dave Jones, 12/07Coventry, England 231 (3.2) $77 \times \sqrt{8+1}$ Carolyn Neptune, 11/07Prairie Village, KS 232 (2.6) $\dfrac{7}{.\overline{1}-8\%} + 7$ Steve Wilson, 12/07Raytown, MO 233 (3.6) $\sqrt{\dfrac{8!}{.7}} - 7 \times 1$ Paolo Pellegrini, 11/08Martina Franca, Italy 234 (3.6) $\sqrt{\dfrac{8!}{.7}} - 7 + 1$ Paolo Pellegrini, 11/08Martina Franca, Italy 235 (4.4) $\sqrt{ \sqrt{ \sqrt[-.7]{ .\overline{1}^7}}} - 8$ Paolo Pellegrini, 10/09Martina Franca, Italy 236 (2.6) $\dfrac{7 + 8\%}{.1 - 7\%}$ Dave Jones, 3/08Coventry, England 237 (4.0) $(8 - .1) \times \sqrt{ \dfrac{7}{.\overline{7}\%}}$ Paolo Pellegrini, 10/09Martina Franca, Italy 238 (3.8) $\sqrt{8! \times .7} + \dfrac{7}{.1}$ Paolo Pellegrini, 11/08Martina Franca, Italy 239 (3.6) $\sqrt{ \dfrac{8!}{.7}} - 1^7$ Paolo Pellegrini, 11/08Martina Franca, Italy 240 (2.8) $\dfrac{8}{.\overline{1}- 7.\overline{7}\%}$ Dave Jones, 3/08Coventry, England 241 (3.6) $\sqrt{ \dfrac{8!}{.7}} + 1^7$ Steve Wilson, 11/08Raytown, MO 242 (4.4) $(\log(1\%))^8 - 7 - 7$ Steve Wilson, 3/11Raytown, MO 243 (3.6) $\sqrt[.7]{ \sqrt{ \sqrt{(8+1)^7}}}$ Paolo Pellegrini, 11/08Martina Franca, Italy 244 (2.4) $\dfrac{17+8\%}{7\%}$ Dave Jones, 3/08Coventry, England 245 (2.2) $\dfrac{7 \times 7}{1-.8}$ Steve Wilson, 12/07Raytown, MO 246 (3.6) $\sqrt{ \dfrac{8!}{.7}} + 7 - 1$ Ralph Jeffords, 11/08Centreville, VA 247 (3.6) $\sqrt{ \dfrac{8!}{.7}} + 7 \times 1$ Ralph Jeffords, 11/08Centreville, VA 248 (3.6) $\sqrt{ \dfrac{8!}{.7}} + 7 + 1$ Ralph Jeffords, 11/08Centreville, VA 249 (3.4) $8^{\sqrt{7.\overline{1}}} - 7$ Paolo Pellegrini, 12/08Martina Franca, Italy 250 (2.2) $\dfrac{8+7}{(7-1)\%}$ Steve Wilson, 3/10Raytown, MO 251 (3.6) $\sqrt{ \dfrac{7!}{8\%} + 1^7}$ Paolo Pellegrini, 12/08Martina Franca, Italy 252 (2.0) $18 \times (7 + 7)$ Dave Jones, 8/07Coventry, England 253 (4.8) $78 - \dfrac{7}{(\log(1\%\%))\%}$ Steve Wilson, 3/11Raytown, MO 254 (3.6) $\dfrac{87}{\sqrt{.\overline{1}}} - 7$ Paolo Pellegrini, 12/08Martina Franca, Italy 255 (2.0) $17 \times (8 + 7)$ Dave Jones, 8/07Coventry, England 256 (3.0) $\left(1 + \dfrac77 \right)^8$ Steve Wilson, 12/07Raytown, MO 257 (3.6) $\sqrt{ \dfrac{8!}{.7}} + 17$ Paolo Pellegrini, 12/08Martina Franca, Italy 258 (3.6) $\sqrt{ \dfrac{7!}{8\%} + 1} + 7$ Paolo Pellegrini, 12/08Martina Franca, Italy 259 (3.6) $\dfrac{7!\%}{1-.8} + 7$ Paolo Pellegrini, 1/09Martina Franca, Italy 260 (2.2) $\dfrac{78}{1-.7}$ Ralph Jeffords, 9/07Centreville, VA 261 (4.2) $\sqrt{ \dfrac{8!}{.7}} + \dfrac{7}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 3/09Olathe, KS 262 (4.2) $\dfrac{7}{.\overline{7} \times \sqrt{.\overline{1}\%}} - 8$ Steve Wilson, 4/09Raytown, MO 263 (3.4) $8^{\sqrt{7.\overline{1}}} + 7$ Paolo Pellegrini, 1/09Martina Franca, Italy 264 (4.0) $.1 \times \left( 7! - \sqrt{ \dfrac{8!}{7 \pmf}} \right)$ Paolo Pellegrini, 10/09Martina Franca, Italy 265 (3.6) $\sqrt[\sqrt{.\overline{1}}]{7} - 78$ Paolo Pellegrini, 10/09Martina Franca, Italy 266 (3.8) $\dfrac{7}{\sqrt{.\overline{1}\%}} + 8 \times 7$ Ralph Jeffords, 11/08Centreville, VA 267 (4.0) $\dfrac{8+1\%}{\left( \sqrt{ \dfrac{7}{.\overline{7}}} \right) \%}$ Steve Wilson, 12/09Raytown, MO 268 (3.6) $\dfrac{87}{\sqrt{.\overline{1}}} + 7$ Ralph Jeffords, 1/09Centreville, VA 269 (2.6) $\dfrac{8 + 7\%}{.1 - 7\%}$ Dave Jones, 3/08Coventry, England 270 (2.6) $\dfrac{7-1}{.8 - .\overline{7}}$ Steve Wilson, 12/07Raytown, MO 271 (5.0) $7 \times \ln\sqrt{\exp 78} + \log(1\%)$ Steve Wilson, 6/23Lawrence, KS 272 (3.4) $\dfrac{17!}{(8+7)!}$ Paolo Pellegrini, 2/09Martina Franca, Italy 273 (3.2) $\dfrac{7!}{18} - 7$ Steve Wilson, 2/08Raytown, MO 274 (4.6) $7 \times \ln\sqrt{\exp 78} + 1$ Steve Wilson, 6/22Lawrence, KS 275 (5.0) $7 \times \ln\sqrt{\exp 78} - \log(1\%)$ Steve Wilson, 6/23Lawrence, KS 276 (3.6) $\dfrac{7.8 - 7! \pmf}{1\%}$ Ralph Jeffords, 9/08Centreville, VA 277 (3.2) $\dfrac{1-.\overline{7}}{8\%\%} - .\overline{7}$ Paolo Pellegrini, 11/09Martina Franca, Italy 278 (4.2) $\dfrac{7}{.\overline{7} \times \sqrt{.\overline{1}\%}} + 8$ Steve Wilson, 4/09Raytown, MO 279 (3.0) $\dfrac{.8 - 7 \times 7\%}{.\overline{1}\%}$ Paolo Pellegrini, 1/09Martina Franca, Italy 280 (2.4) $\dfrac{7}{(1.7 + .8)\%}$ Dave Jones, 3/08Coventry, England 281 (4.8) $\dfrac{7}{(\ln\sqrt{\exp 7})\%} + 81$ Steve Wilson, 6/22Lawrence, KS 282 (3.4) $\sqrt{ \sqrt{17^8}} - 7$ Steve Wilson, 6/08Raytown, MO 283 (5.8) $\sqrt{ \dfrac{7}{.\overline{7}\%\%}} - 8 + \log(1 \pm\pm\pm)$ Steve Wilson, 7/12Raytown, MO 284 (4.8) $-71 \times \log( (8-7)\%\%)$ Steve Wilson, 7/12Raytown, MO 285 (4.8) $\ln\sqrt{\exp\left(\dfrac{7 \times 7 + 8}{.1}\right)}$ Steve Wilson, 6/23Lawrence, KS 286 (5.6) $\sqrt{ \dfrac{7}{.\overline{7}\%\%}} - 8 + \log(1 \pm\pm)$ Steve Wilson, 7/12Raytown, MO 287 (3.2) $\dfrac{7!}{18} + 7$ Steve Wilson, 2/08Raytown, MO 288 (3.4) $\dfrac{8!}{7+7} \times .1$ Brad Anderson, 8/07Overland Park, KS 289 (3.6) $\dfrac{8 - 7!\pmf}{1\%} - 7$ Ralph Jeffords, 9/08Centreville, VA 290 (2.2) $\dfrac{87}{1-.7}$ Ralph Jeffords, 2/08Centreville, VA 291 (4.0) $\sqrt{ \dfrac{7}{.\overline{7}\%\%}} - 8 - 1$ Paolo Pellegrini, 1/10Martina Franca, Italy 292 (3.8) $\dfrac{7}{7\% \times \sqrt{.\overline{1}}} - 8$ Paolo Pellegrini, 1/09Martina Franca, Italy 293 (3.6) $\dfrac{8}{\sqrt{7.\overline{1}}\%} - 7$ Ralph Jeffords, 1/09Centreville, VA 294 (3.4) $7 \times 7 \times \left(\sqrt{8+1} \right)!$ Steve Wilson, 2/08Raytown, MO 295 (5.4) $\sqrt{ \dfrac{7}{.\overline{7}\%\%}} - 8 - \log(1 \pm)$ Steve Wilson, 7/12Raytown, MO 296 (3.4) $\sqrt{ \sqrt{17^8}} + 7$ Steve Wilson, 6/08Raytown, MO 297 (3.8) $\dfrac{7}{\sqrt{.\overline{1}\%}} + 87$ Paolo Pellegrini, 2/09Martina Franca, Italy 298 (4.6) $\sqrt{ \dfrac{7}{.\overline{7}\%\%}} - 8^{\sqrt{.\overline{1}}}$ Ralph Jeffords, 3/09Centreville, VA 299 (3.6) $\sqrt{ \dfrac{7!}{7 \times 8\pmf}} - 1$ Paolo Pellegrini, 2/09Martina Franca, Italy 300 (2.2) $\dfrac{17+7}{8\%}$ Steve Wilson, 1/08Raytown, MO 301 (3.6) $\sqrt{ \dfrac{7!}{7 \times 8\pmf}} + 1$ Paolo Pellegrini, 2/09Martina Franca, Italy 302 (4.6) $\sqrt{ \dfrac{7}{.\overline{7}\%\%}} + 8^{\sqrt{.\overline{1}}}$ Ralph Jeffords, 3/09Centreville, VA 303 (3.6) $\dfrac{8 - 7!\pmf}{1\%} + 7$ Ralph Jeffords, 9/08Centreville, VA 304 (4.6) $\ln\sqrt{\exp(87 \times 7 - 1)}$ Steve Wilson, 6/23Lawrence, KS 305 (4.4) $(\log(1\%))^8 + 7 \times 7$ Steve Wilson, 8/23Lawrence, KS 306 (5.0) $\sqrt{\dfrac{7!}{7 \times 8\pmf}} - \log(1\pmm)$ Steve Wilson, 6/23Lawrence, KS 307 (2.8) $\dfrac{.7}{(1-.\overline{7})\%} - 8$ Steve Wilson, 1/09Raytown, MO 308 (3.8) $\dfrac{7}{7\% \times \sqrt{.\overline{1}}} + 8$ Paolo Pellegrini, 2/09Martina Franca, Italy 309 (3.8) $7! \times (7 - .\overline{8})\% + 1$ Paolo Pellegrini, 3/09Martina Franca, Italy 310 (2.4) $\dfrac{8 - 7 \times .7}{1\%}$ Steve Wilson, 1/08Raytown, MO 311 (3.6) $\sqrt{ \dfrac{8!}{.7}} + 71$ Paolo Pellegrini, 3/09Martina Franca, Italy 312 (4.6) $(77 + 1) \times \ln\sqrt{\exp 8}$ Steve Wilson, 8/23Lawrence, KS 313 (4.2) $8!\% \times .\overline{7} - .7 + .1$ Paolo Pellegrini, 8/10Martina Franca, Italy 314 (2.6) $\dfrac{7}{.8 - .\overline{7}} - 1$ Steve Wilson, 1/08Raytown, MO 315 (2.4) $\dfrac{8 \times 7}{.1\overline{7}}$ Dave Jones, 4/08Coventry, England 316 (2.6) $\dfrac{7}{.8 - .\overline{7}} + 1$ Steve Wilson, 1/08Raytown, MO 317 (3.8) $\dfrac{8}{\sqrt{.\overline{1}\%}} + 77$ Paolo Pellegrini, 3/09Martina Franca, Italy 318 (4.0) $\sqrt{ \dfrac{7}{.\overline{7}\%\%}} + 18$ Paolo Pellegrini, 1/10Martina Franca, Italy 319 (3.4) $\dfrac{.7 + .\overline{8}\%}{(1-.\overline{7})\%}$ Paolo Pellegrini, 11/09Martina Franca, Italy 320 (2.8) $\dfrac{7.\overline{1}}{.8 - .\overline{7}}$ Dave Jones, 4/08Coventry, England 321 (4.0) $\dfrac{8 - 7 + 7\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 2/10Martina Franca, Italy 322 (3.6) $(7 + 1) \times (8!\pm - 7\%)$ Paolo Pellegrini, 3/09Martina Franca, Italy 323 (2.8) $\dfrac{.7}{(1-.\overline{7})\%}+ 8$ Steve Wilson, 1/09Raytown, MO 324 (3.8) $\dfrac{ \dfrac{7}{7\%} + 8}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 4/09Martina Franca, Italy 325 (3.4) $\dfrac{ (7+7)\% - .\overline{1}}{.\overline{8}\%\%}$ Paolo Pellegrini, 11/09Martina Franca, Italy 326 (4.2) $\dfrac{ \sqrt{.\overline{1}}}{.\overline{8}\pmf} - 7 \times 7$ Paolo Pellegrini, 8/10Martina Franca, Italy 327 (4.8) $\dfrac{1}{(\ln\sqrt{\exp 8})\pmf} + 77$ Steve Wilson, 6/23Lawrence, KS 328 (3.6) $\sqrt[\sqrt{.\overline{1}}]{7} - 8 - 7$ Steve Wilson, 10/09Raytown, MO 329 (5.0) $\dfrac{7!}{8 + 7} + \log(1\%\%\pm)$ Steve Wilson, 6/23Lawrence, KS 330 (2.8) $\dfrac{.7}{(1-.\overline{78})\%}$ Steve Wilson, 4/08Raytown, MO 331 (4.8) $\dfrac{7!}{8+7} + \log(1\% \pm)$ Steve Wilson, 3/11Raytown, MO 332 (4.8) $\dfrac{7!}{8+7} + \log(1\%\%)$ Steve Wilson, 3/11Raytown, MO 333 (4.0) $\dfrac{7+1-7! \pmf}{.\overline{8}\%}$ Paolo Pellegrini, 4/09Martina Franca, Italy 334 (4.6) $\dfrac{7!}{8+7} + \log(1\%)$ Steve Wilson, 12/10Raytown, MO 335 (3.2) $\dfrac{7!}{8+7} - 1$ Steve Wilson, 6/08Raytown, MO 336 (1.0) $(7 - 1) \times 7 \times 8$ Dave Jones, 5/07Coventry, England 337 (3.2) $\dfrac{7!}{8+7} + 1$ Steve Wilson, 6/08Raytown, MO 338 (4.6) $\dfrac{7!}{8+7} - \log(1\%)$ Steve Wilson, 12/10Raytown, MO 339 (4.2) $\dfrac{ \sqrt{8!\pmf} + \sqrt{7}}{\sqrt{7}\%} - 1$ Steve Wilson, 12/10Raytown, MO 340 (4.0) $\dfrac{8}{\sqrt{.\overline{1}\%}} + \dfrac{7}{7\%}$ Paolo Pellegrini, 3/09Martina Franca, Italy 341 (4.2) $\dfrac{ \sqrt{8!\pmf} + \sqrt{7}}{\sqrt{7}\%} + 1$ Paolo Pellegrini, 8/10Martina Franca, Italy 342 (3.2) $\dfrac{ \sqrt{7^8}}{7} - 1$ Kevin Schwarz, 3/09Olathe, KS 343 (1.0) $(8 - 1) \times 7 \times 7$ Dave Jones, 5/07Coventry, England 344 (3.2) $\dfrac{ \sqrt{7^8}}{7} + 1$ Kevin Schwarz, 3/09Olathe, KS 345 (3.6) $7 \times (7!\% - 1) - .8$ Paolo Pellegrini, 11/09Martina Franca, Italy 346 (3.6) $\dfrac{.\overline{7} - .\overline{8}\%}{(1-.\overline{7})\%}$ Paolo Pellegrini, 11/09Martina Franca, Italy 347 (4.8) $\dfrac{ \sqrt{7^8}}{7} - \log(1\%\%)$ Steve Wilson, 3/11Raytown, MO 348 (3.6) $8 \times (7!\% - 7 + .1)$ Paolo Pellegrini, 1/10Martina Franca, Italy 349 (4.8) $\dfrac{ \sqrt{7^8}}{7} - \log(1 \pm\pm)$ Steve Wilson, 3/11Raytown, MO 350 (2.2) $\dfrac{7}{(8-7+1)\%}$ Ralph Jeffords, 12/07Centreville, VA 351 (2.4) $\dfrac{78}{1-.\overline{7}}$ Dave Jones, 4/08Coventry, England 352 (3.6) $7! \times 7\% - 1 \times .8$ Steve Wilson, 8/08Raytown, MO 353 (2.8) $\dfrac{.8}{(1-.\overline{7})\%} - 7$ Steve Wilson, 1/09Raytown, MO 354 (3.6) $\dfrac{7!\% - 8 - 7}{.1}$ Paolo Pellegrini, 2/10Martina Franca, Italy 355 (3.0) $\dfrac{.7\overline{8}}{(1-.\overline{7})\%}$ Paolo Pellegrini, 12/09Martina Franca, Italy 356 (4.2) $7 \times \left( \dfrac{ \sqrt{.\overline{1}}}{.\overline{7}\%} + 8 \right)$ Paolo Pellegrini, 8/10Martina Franca, Italy 357 (2.4) $\dfrac{7}{.1-8\%} + 7$ Dave Jones, 4/08Coventry, England 358 (3.6) $\sqrt[\sqrt{.\overline{1}}]{7} + 8 + 7$ Steve Wilson, 10/09Raytown, MO 359 (3.2) $\dfrac{.\overline{8} - 7 \times 7\%}{.\overline{1}\%}$ Steve Wilson, 3/11Raytown, MO 360 (2.6) $\dfrac{7+1}{.8 - .\overline{7}}$ Dave Jones, 4/08Coventry, England 361 (4.2) $\sqrt{ \dfrac{7}{.\overline{7}\%\%} + 8! + 1}$ Paolo Pellegrini, 8/10Martina Franca, Italy 362 (5.2) $(8 - .\overline{7})\% \times 7! + \log(1\%)$ Steve Wilson, 12/10Raytown, MO 363 (3.8) $(8 - .\overline{7})\% \times 7! - 1$ Paolo Pellegrini, 3/09Martina Franca, Italy 364 (3.8) $(8 - .\overline{7})\% \times 7! \times 1$ Kevin Schwarz, 5/09 Olathe, KS 365 (3.8) $(8 - .\overline{7})\% \times 7! + 1$ Kevin Schwarz, 5/09 Olathe, KS 366 (3.6) $\dfrac{8.7 - 7!\pmf}{1\%}$ Ralph Jeffords, 9/08Centreville, VA 367 (2.8) $\dfrac{.8}{(1-.\overline{7})\%} + 7$ Steve Wilson, 1/09Raytown, MO 368 (2.6) $\dfrac{1-.7}{8\%\%} - 7$ Steve Wilson, 1/09Raytown, MO 369 (2.4) $\dfrac{7 \times 7 - 8}{.\overline{1}}$ Steve Wilson, 6/08Raytown, MO 370 (3.6) $\dfrac{7 + 1 - 7!\pmf}{8 \pmf}$ Paolo Pellegrini, 2/10Martina Franca, Italy 371 (3.0) $\dfrac{7 + .\overline{7}\%}{1.\overline{8}\%}$ Paolo Pellegrini, 12/09Martina Franca, Italy 372 (5.2) $\dfrac{ \sqrt{ \dfrac{7}{.\overline{7}}}}{8 \pmf} + \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 373 (5.2) $\dfrac{ \sqrt{ \dfrac{7}{.\overline{7}}}}{8 \pmf} + \log(1\%)$ Steve Wilson, 12/10Raytown, MO 374 (3.8) $\dfrac{ \sqrt{ \dfrac{7}{.\overline{7}}}}{8 \pmf} - 1$ Paolo Pellegrini, 2/10Martina Franca, Italy 375 (3.8) $\dfrac{7}{8 \times \sqrt{.\overline{1}} \times 7\pmf}$ Steve Wilson, 4/09Raytown, MO 376 (3.8) $\dfrac{ \sqrt{ \dfrac{7}{.\overline{7}}}}{8 \pmf} + 1$ Paolo Pellegrini, 2/10Martina Franca, Italy 377 (4.8) $-77 \times \log(1\% \pm) - 8$ Steve Wilson, 3/11Raytown, MO 378 (2.8) $\dfrac{.7}{.\overline{18}\%} - 7$ Dave Jones, 6/08Coventry, England 379 (4.0) $7! \times .1 - \dfrac{7!}{8!\pmf}$ Paolo Pellegrini, 3/10Martina Franca, Italy 380 (4.0) $\dfrac{ \sqrt{\dfrac{7}{.\overline{7}}} + .8}{1\%}$ Paolo Pellegrini, 3/10Martina Franca, Italy 381 (4.0) $\sqrt{ \dfrac{7}{.\overline{7}\%\%}} + 81$ Paolo Pellegrini, 4/10Martina Franca, Italy 382 (2.6) $\dfrac{1-.7}{8\%\%} + 7$ Paolo Pellegrini, 12/09Martina Franca, Italy 383 (4.8) $-78 \times \log(1\% \pm) - 7$ Steve Wilson, 3/11Raytown, MO 384 (1.0) $(7 \times 7 - 1) \times 8$ Dave Jones, 5/07Coventry, England 385 (1.0) $(7 \times 8 - 1) \times 7$ Dave Jones, 5/07Coventry, England 386 (3.2) $\dfrac{.\overline{7} + 8\%}{(1-.\overline{7})\%}$ Paolo Pellegrini, 12/09Martina Franca, Italy 387 (4.0) $\dfrac{8 + 7 \times .7}{\sqrt{.\overline{1}\%}}$ Steve Wilson, 2/09Raytown, MO 388 (4.6) $8 \times 7 \times 7 + \log(1\%\%)$ Steve Wilson, 12/10Raytown, MO 389 (3.8) $8!\% - 7 - (7 - 1)!\%$ Paolo Pellegrini, 3/10Martina Franca, Italy 390 (4.4) $8 \times 7 \times 7 + \log(1\%)$ Regina Hillman, 9/07Bucyrus, KS 391 (1.0) $8 \times 7 \times 7 - 1$ Melody Tarbox, 3/07 Ottawa, KS 392 (1.0) $8 \times 7 \times 7 \times 1$ Ashley Barboza, 1/07Overland Park, KS 393 (1.0) $8 \times 7 \times 7 + 1$ Ashley Barboza, 1/07Overland Park, KS 394 (4.4) $8 \times 7 \times 7 - \log(1\%)$ Regina Hillman, 9/07 Bucyrus, KS 395 (3.0) $\dfrac{.8\overline{7}}{(1-.\overline{7})\%}$ Paolo Pellegrini, 12/09Martina Franca, Italy 396 (4.0) $\dfrac{7+7-.8}{\sqrt{.\overline{1}\%}}$ Steve Wilson, 2/09Raytown, MO 397 (3.6) $8 \times (7!\% + .1) - 7$ Steve Wilson, 1/10Raytown, MO 398 (5.2) $\dfrac{8!}{(7! + 7!)\%} + \log(1\%)$ Steve Wilson, 12/10Raytown, MO 399 (1.0) $(8 \times 7 + 1) \times 7$ Levi Self, 5/07San Antonio, TX 400 (1.0) $(7 \times 7 + 1) \times 8$ Levi Self, 5/07San Antonio, TX

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).