$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\sech} {sech}$

## Integermania!

#### Dave's Birthday

The digits of the birthday of Integermaniac master Dave Jones are 1, 7, 7, and 8. Create each of the positive integers using one copy of each number, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).

 401 (3.8) $\dfrac{8!}{(7! + 7!)\%} + 1$ Paolo Pellegrini, 3/10Martina Franca, Italy 402 (4.8) $\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} - 71 \right)}$ Steve Wilson, 6/23Lawrence, KS 403 (3.6) $(8! - (7 - 1)!)\% + 7$ Paolo Pellegrini, 3/10Martina Franca, Italy 404 (3.6) $\dfrac{7 + 7!\pmf - 8}{1\%}$ Ralph Jeffords, 9/08Centreville, VA 405 (3.8) $\dfrac{1}{.\overline{8}\pmf} - \dfrac{7!}{7}$ Paolo Pellegrini, 4/10Martina Franca, Italy 406 (4.8) $\dfrac{\ln\sqrt{\exp 7}}{1\%} + 8 \times 7$ Steve Wilson, 6/23Lawrence, KS 407 (3.0) $\dfrac{.\overline{8}}{(1-.\overline{7})\%} + 7$ Paolo Pellegrini, 4/10Martina Franca, Italy 408 (3.8) $\dfrac{17}{\sqrt{ \dfrac{.7}{8!\%}}}$ Paolo Pellegrini, 4/10Martina Franca, Italy 409 (4.8) $\dfrac{.\overline{1} - (8 - 7\%)\%}{\sqrt{.\overline{7}\%\%}}$ Paolo Pellegrini, 4/10Martina Franca, Italy 410 (2.2) $\dfrac{7 \times 7 - 8}{.1}$ Steve Wilson, 4/08Raytown, MO 411 (3.6) $8 \times (7!\% + .1) + 7$ Steve Wilson, 1/10Raytown, MO 412 (3.8) $\dfrac{7+7}{\sqrt{.\overline{1}\%}} - 8$ Ralph Jeffords, 2/09Centreville, VA 413 (4.0) $\left(8 + \sqrt{.\overline{1}}\right) \times 7!\% - 7$ Paolo Pellegrini, 5/10Martina Franca, Italy 414 (3.2) $\dfrac{7-.1}{(.\overline{8} + .\overline{7})\%}$ Paolo Pellegrini, 5/10Martina Franca, Italy 415 (3.6) $\dfrac{.1-.\overline{7}\%}{(.8 - .\overline{7})\%}$ Paolo Pellegrini, 5/10Martina Franca, Italy 416 (4.8) $\ln\sqrt{\exp\left( \dfrac{7!}{7 - 1} - 8 \right)}$ Steve Wilson, 6/23Lawrence, KS 417 (3.4) $7! \times .1 - 87$ Paolo Pellegrini, 5/10Martina Franca, Italy 418 (3.4) $\dfrac{.7 \times .\overline{7} - 8\%}{.\overline{1}\%}$ Paolo Pellegrini, 5/10Martina Franca, Italy 419 (3.0) $\dfrac{7}{(.\overline{8} + .\overline{7})\%} - 1$ Steve Wilson, 12/10Raytown, MO 420 (2.6) $\dfrac{7}{(8+7) \times .\overline{1}\%}$ Dave Jones, 6/08Coventry, England 421 (3.0) $\dfrac{7}{(.\overline{8} + .\overline{7})\%} + 1$ Steve Wilson, 12/10Raytown, MO 422 (5.4) $\dfrac{7}{(.\overline{8} + .\overline{7})\%} - \log(1\%)$ Steve Wilson, 12/10Raytown, MO 423 (3.6) $\dfrac{8 + (1 - 7!)\pmf}{7\pmf}$ Paolo Pellegrini, 6/10Martina Franca, Italy 424 (3.8) $(7 - 8!\%\%) \times \dfrac{1}{7\pmf}$ Paolo Pellegrini, 6/10Martina Franca, Italy 425 (3.6) $\dfrac{.1 - (7 - .\overline{7})\%}{.\overline{8}\%\%}$ Paolo Pellegrini, 6/10Martina Franca, Italy 426 (3.0) $\dfrac{7.1}{(.\overline{8} + .\overline{7})\%}$ Paolo Pellegrini, 6/10Martina Franca, Italy 427 (3.2) $\dfrac{.7}{.\overline{18}\%} - .\overline{7}$ Paolo Pellegrini, 6/10Martina Franca, Italy 428 (3.8) $\dfrac{7+7}{\sqrt{.\overline{1}\%}} + 8$ Ralph Jeffords, 2/09Centreville, VA 429 (4.0) $\dfrac{8 + 7 - .7}{\sqrt{.\overline{1}\%}}$ Steve Wilson, 2/09Raytown, MO 430 (3.6) $\sqrt[ \sqrt{.\overline{1}}]{7} + 87$ Steve Wilson, 10/09Raytown, MO 431 (4.8) $\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} + 1 \right)} - 7$ Steve Wilson, 6/23Lawrence, KS 432 (4.6) $\ln\sqrt{\exp(871 - 7)}$ Steve Wilson, 6/23Lawrence, KS 433 (2.4) $7 \times \dfrac{7}{.\overline{1}} - 8$ Dave Jones, 6/08Coventry, England 434 (2.2) $7 \times \left( \dfrac{7}{.1} - 8 \right)$ Dave Jones, 5/08Coventry, England 435 (3.6) $\sqrt[ \sqrt{.\overline{1}}]{8} - 77$ Steve Wilson, 10/09Raytown, MO 437 (4.8) $\dfrac{\ln\sqrt{\exp 7}}{1\%} + 87$ Steve Wilson, 6/23Lawrence, KS 438 (4.6) $\ln\sqrt{\exp(877 - 1)}$ Steve Wilson, 6/23Lawrence, KS 439 (4.6) $\ln\sqrt{\exp(871 + 7)}$ Steve Wilson, 6/23Lawrence, KS 440 (4.8) $\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} + 7 \right)} - 1$ Steve Wilson, 6/23Lawrence, KS 441 (1.0) $7 \times 7 \times (8 + 1)$ Dave Jones, 5/07Coventry, England 442 (4.8) $\dfrac{\ln\sqrt{\exp 87}}{.1} + 7$ Steve Wilson, 6/23Lawrence, KS 443 (2.4) $\dfrac{8}{1.\overline{7}\%} - 7$ Dave Jones, 6/08Coventry, England 444 (3.8) $\dfrac{7.8 + 7}{\sqrt{.\overline{1}\%}}$ Steve Wilson, 2/09Raytown, MO 445 (4.8) $\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} + 1 \right)} + 7$ Steve Wilson, 6/23Lawrence, KS 446 (4.8) $\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} + 17 \right)}$ Steve Wilson, 6/23Lawrence, KS 448 (1.0) $8 \times 7 \times (7 + 1)$ Melody Tarbox, 3/07 Ottawa, KS 449 (2.4) $7 \times \dfrac{7}{.\overline{1}} + 8$ Dave Jones, 6/08Coventry, England 450 (2.4) $\dfrac{8}{1.7\overline{7}\%}$ Dave Jones, 7/08Coventry, England 451 (5.0) $\dfrac{8}{1.\overline{7}\%} + \cos(7!^\circ)$ Steve Wilson, 6/23Lawrence, KS 455 (2.4) $7 \times \left( \dfrac{8}{.\overline{1}} - 7 \right)$ Dave Jones, 7/08Coventry, England 457 (2.4) $\dfrac{8}{1.\overline{7}\%} + 7$ Dave Jones, 7/08Coventry, England 460 (2.8) $\dfrac{.7 - 1\%}{(8+7)\%\%}$ Steve Wilson, 3/10Raytown, MO 462 (4.8) $7 \times \left( \dfrac{7}{.1} - \ln\sqrt{\exp 8}\right)$ Steve Wilson, 6/23Lawrence, KS 463 (3.6) $\sqrt[\sqrt{.\overline{1}}]{8} - 7 \times 7$ Steve Wilson, 12/10Raytown, MO 466 (2.8) $\dfrac{7-1\%}{(.8 + .7)\%}$ Steve Wilson, 3/10Raytown, MO 468 (2.0) $(7 - 1) \times 78$ Dave Jones, 8/07Coventry, England 470 (4.8) $\dfrac{\ln\sqrt{\exp (87 + 7)}}{.1}$ Steve Wilson, 8/23Lawrence, KS 471 (2.6) $\dfrac{8 + .7\%}{1.7\%}$ Dave Jones, 7/08Coventry, England 472 (4.8) $\left( \dfrac{1}{7\pmf} - 8 \right) \times \ln\sqrt{\exp 7}$ Steve Wilson, 8/23Lawrence, KS 473 (3.6) $7! \times .\overline{1} - 87$ Steve Wilson, 12/10Raytown, MO 475 (4.8) $\dfrac{\ln\sqrt{\exp (77 - 1)}}{8\%}$ Steve Wilson, 8/23Lawrence, KS 476 (4.6) $17 \times 7 \times \ln\sqrt{\exp 8}$ Steve Wilson, 8/23Lawrence, KS 477 (4.8) $\dfrac{ \ln\sqrt{\exp 8}}{1\%} + 77$ Steve Wilson, 6/23Lawrence, KS 480 (4.8) $\dfrac{\ln\sqrt{\exp (8!)}}{7 \times (7 + 1)}$ Steve Wilson, 8/23Lawrence, KS 481 (4.8) $\dfrac{\sech\ln 7}{7\%\%} + 81$ Steve Wilson, 6/23Lawrence, KS 482 (2.2) $7 \times \dfrac{7}{.1} - 8$ Jacob Smith, 11/07Leawood, KS 486 (4.8) $\dfrac{7 \times 7}{.1} - \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 489 (2.0) $71 \times 7 - 8$ Melissa Mitchell, 11/07Kansas City, KS 490 (2.2) $\dfrac{8 \times 7 - 7}{.1}$ Steve Wilson, 4/08Raytown, MO 491 (4.8) $\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} - 8 - 1$ Steve Wilson, 6/23Lawrence, KS 492 (4.8) $\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} - 8 \times 1$ Steve Wilson, 6/23Lawrence, KS 493 (3.0) $\dfrac{.\overline{8}}{.1\overline{7}\%} - 7$ Steve Wilson, 12/10Raytown, MO 494 (4.8) $\dfrac{7 \times 7}{.1} + \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 495 (4.8) $71 \times 7 - \ln\sqrt{\sqrt{\exp 8}}$ Steve Wilson, 6/23Lawrence, KS 496 (3.4) $(7 - 1)! \times .7 - 8$ Steve Wilson, 8/08Raytown, MO 497 (2.4) $8 \times \dfrac{7}{.\overline{1}} - 7$ Brad Anderson, 9/07Overland Park, KS 498 (2.2) $7 \times \dfrac{7}{.1} + 8$ Ashley Barboza, 3/07Overland Park, KS 499 (4.0) $\dfrac{7!}{7!\% - 8!\pmf} - 1$ Steve Wilson, 12/10Raytown, MO 500 (2.4) $\dfrac{7}{(1-.8) \times 7\%}$ Dave Jones, 7/08Coventry, England 501 (4.0) $\dfrac{7!}{7!\% - 8!\pmf} + 1$ Paolo Pellegrini, 7/10Martina Franca, Italy 502 (3.8) $\sqrt[\sqrt{.\overline{1}}]{8} - \dfrac{7}{.7}$ Paolo Pellegrini, 7/10Martina Franca, Italy 503 (3.4) $7! \times .1 - 8 + 7$ Steve Wilson, 9/08Raytown, MO 504 (2.2) $8 \times \left( \dfrac{7}{.1} - 7 \right)$ Jacob Smith, 10/07Leawood, KS 505 (2.0) $71 \times 7 + 8$ Dave Jones, 1/08Coventry, England 506 (3.6) $\dfrac{ \dfrac{8!\%}{7} - 7}{.1}$ Paolo Pellegrini, 7/10Martina Franca, Italy 507 (3.0) $\dfrac{.\overline{8}}{.1\overline{7}\%} + 7$ Paolo Pellegrini, 7/10Martina Franca, Italy 508 (4.8) $\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} + 8 \times 1$ Steve Wilson, 6/23Lawrence, KS 509 (4.8) $\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} + 8 + 1$ Steve Wilson, 6/23Lawrence, KS 510 (3.8) $\dfrac{8.7-7}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 7/10Martina Franca, Italy 511 (2.2) $7 \times \left( \dfrac{8}{.1} - 7 \right)$ Dave Jones, 5/08Coventry, England 512 (2.0) $(71 - 7) \times 8$ Dave Jones, 1/08Coventry, England 513 (2.4) $\dfrac{7 \times 7 + 8}{.\overline{1}}$ Dave Jones, 10/08Coventry, England 518 (2.0) $(81 - 7) \times 7$ Dave Jones, 1/08Coventry, England 519 (3.4) $7! \times .1 + 8 + 7$ Steve Wilson, 9/08Raytown, MO 520 (4.8) $\dfrac{78}{\ln\sqrt{\exp (1 - .7)}}$ Steve Wilson, 8/23Lawrence, KS 522 (2.0) $87 \times (7 - 1)$ Jacob Smith, 11/07Leawood, KS 525 (2.2) $(7 - 1) \times \dfrac{7}{8\%}$ Dave Jones, 5/08Coventry, England 526 (3.6) $\sqrt[\sqrt{.\overline{1}}]{8} + 7 + 7$ Steve Wilson, 12/10Raytown, MO 530 (4.8) $\dfrac{7 \times 7 + \ln\sqrt{\exp 8}}{.1}$ Steve Wilson, 6/23Lawrence, KS 532 (4.4) $7 \times (78 + \log(1\%))$ Steve Wilson, 6/23Lawrence, KS 536 (4.6) $78 \times 7 - \cot\arctan(.1)$ Steve Wilson, 6/23Lawrence, KS 537 (4.8) $78 \times 7 - \cot\arctan(.\overline{1})$ Steve Wilson, 6/23Lawrence, KS 538 (4.8) $78 \times 7 + \log(1\%\pmm)$ Steve Wilson, 6/23Lawrence, KS 539 (2.0) $(78 - 1) \times 7$ Dave Jones, 1/08Coventry, England 540 (3.2) $\dfrac{.7 + .7 - .8}{.\overline{1}\%}$ Steve Wilson, 12/10Raytown, MO 541 (4.6) $78 \times 7 + \log(1\%\pm)$ Steve Wilson, 6/23Lawrence, KS 542 (4.6) $78 \times 7 + \log(1\%\%)$ Steve Wilson, 6/23Lawrence, KS 543 (2.8) $\dfrac{.7}{.\overline{1}\%} - 87$ Dave Jones, 10/08Coventry, England 544 (4.4) $78 \times 7 + \log(1\%)$ Jacob Smith, 12/07Leawood, KS 545 (2.0) $78 \times 7 - 1$ Brad Anderson, 9/07Overland Park, KS 546 (2.0) $78 \times 7 \times 1$ Brad Anderson, 9/07Overland Park, KS 547 (2.0) $78 \times 7 + 1$ Brad Anderson, 9/07Overland Park, KS 548 (4.4) $78 \times 7 - \log(1\%)$ Jacob Smith, 12/07Leawood, KS 549 (4.4) $78 \times 7 - \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 550 (2.6) $\dfrac{7}{7\% \times .\overline{18}}$ Ralph Jeffords, 11/08Centreville, VA 551 (4.6) $78 \times 7 - \log(1\%\pm)$ Steve Wilson, 6/23Lawrence, KS 552 (2.8) $\dfrac{.7}{.\overline{1}\%} - 78$ Dave Jones, 10/08Coventry, England 553 (2.0) $(78 + 1) \times 7$ Dave Jones, 1/08Coventry, England 554 (4.8) $78 \times 7 - \log(1\%\pmm)$ Steve Wilson, 6/23Lawrence, KS 555 (4.2) $\dfrac{7!\pmf - .7 + .1}{.8\pmf}$ Paolo Pellegrini, 6/09Martina Franca, Italy 556 (4.6) $78 \times 7 + \cot\arctan(.1)$ Steve Wilson, 6/23Lawrence, KS 557 (5.4) $\dfrac{7!\pmf}{.\overline{8}\%} - 7 + \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 558 (5.4) $\dfrac{7!\pmf}{.\overline{8}\%} - 7 + \log(1\%)$ Steve Wilson, 12/10Raytown, MO 559 (3.2) $\dfrac{7!}{8} - 71$ Steve Wilson, 9/08Raytown, MO 560 (2.0) $7 \times 81 - 7$ Dave Jones, 2/08Coventry, England 561 (2.0) $71 \times 8 - 7$ Melissa Mitchell, 11/07Kansas City, KS 562 (5.4) $\dfrac{7!\pmf}{.\overline{8}\%} - 7 - \log(1\%)$ Steve Wilson, 12/10Raytown, MO 563 (5.4) $\dfrac{7!\pmf}{.\overline{8}\%} - 7 - \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 566 (4.6) $7 \times 81 - \cos(7!^\circ)$ Steve Wilson, 6/23Lawrence, KS 567 (2.2) $8 \times \dfrac{7}{.1} + 7$ Jacob Smith, 10/07Leawood, KS 568 (3.4) $71 \times \dfrac{8!}{7!}$ Kevin Schwarz, 10/07Olathe, KS 569 (3.4) $\dfrac{8! \times .1}{7} - 7$ Steve Wilson, 6/23Lawrence, KS 570 (2.2) $\dfrac{7 \times 7 + 8}{.1}$ Steve Wilson, 4/08Raytown, MO 571 (5.4) $\dfrac{7!\pmf}{.\overline{8}\%} + 7 + \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 572 (5.4) $\dfrac{7!\pmf}{.\overline{8}\%} + 7 + \log(1\%)$ Steve Wilson, 12/10Raytown, MO 573 (4.0) $\dfrac{7!\pmf}{.\overline{8}\%} + 7 - 1$ Paolo Pellegrini, 6/09Martina Franca, Italy 574 (2.0) $7 \times 81 + 7$ Dave Jones, 2/08Coventry, England 575 (2.0) $71 \times 8 + 7$ Melissa Mitchell, 11/07Kansas City, KS 576 (3.4) $\dfrac{7!}{7} \times .8 \times 1$ Steve Wilson, 12/10Raytown, MO 577 (3.4) $\dfrac{7!}{7} \times .8 + 1$ Steve Wilson, 12/10Raytown, MO 578 (4.8) $\dfrac{7!}{7} \times .8 - \log(1\%)$ Steve Wilson, 12/10Raytown, MO 579 (4.8) $\dfrac{7!}{7} \times .8 - \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 580 (4.8) $\dfrac{87}{\ln\sqrt{\exp (1 - .7)}}$ Steve Wilson, 8/23Lawrence, KS 581 (4.8) $\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} + 81$ Steve Wilson, 6/23Lawrence, KS 582 (3.4) $7! \times .1 + 78$ Jonathan Frank, 6/21Rye, NY 583 (3.4) $\dfrac{8! \times .1}{7} + 7$ Steve Wilson, 6/23Lawrence, KS 584 (3.6) $\dfrac{8!\pmf}{7\%} + 7 + 1$ Steve Wilson, 6/23Lawrence, KS 585 (4.6) $78 \times (7 + \ln\sqrt{\exp 1})$ Steve Wilson, 6/23Lawrence, KS 589 (3.6) $\sqrt[\sqrt{.\overline{1}}]{8} + 77$ Steve Wilson, 12/10Raytown, MO 591 (3.4) $7! \times .1 + 87$ Jonathan Frank, 6/21Rye, NY 593 (3.6) $\dfrac{8}{\sqrt{1.\overline{7}}\%} - 7$ Ralph Jeffords, 2/09Centreville, VA 595 (3.4) $\dfrac{7!}{7} - \dfrac{1}{8\pmf}$ Steve Wilson, 12/10Raytown, MO 600 (2.2) $\dfrac{7 \times 7 - 1}{8\%}$ Dave Jones, 5/08Coventry, England 601 (4.8) $87 \times 7 + \log(1\%\pmm)$ Steve Wilson, 6/23Lawrence, KS 602 (2.0) $7 \times (87 - 1)$ Dave Jones, 2/08Coventry, England 603 (4.6) $87 \times 7 + \log(1\pmm)$ Steve Wilson, 6/23Lawrence, KS 604 (4.6) $87 \times 7 + \log(1\%\pm)$ Steve Wilson, 6/23Lawrence, KS 605 (4.6) $87 \times 7 + \log(1\%\%)$ Steve Wilson, 6/23Lawrence, KS 606 (4.4) $87 \times 7 + \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 607 (3.6) $\dfrac{8}{\sqrt{1.\overline{7}}\%} + 7$ Steve Wilson, 12/10Raytown, MO 608 (2.0) $87 \times 7 - 1$ Melissa Mitchell, 10/07Kansas City, KS 609 (2.0) $87 \times 7 \times 1$ Regina Hillman, 9/07Bucyrus, KS 610 (2.0) $87 \times 7 + 1$ Ashley Barboza, 3/07Overland Park, KS 611 (4.4) $87 \times 7 - \log(1\%)$ Steve Wilson, 12/10Raytown, MO 612 (3.8) $\sqrt[\sqrt{.\overline{1}}]{8} + \dfrac{7}{7\%}$ Steve Wilson, 12/10Raytown, MO 613 (2.2) $\dfrac{7}{1\%} - 87$ Dave Jones, 5/08Coventry, England 614 (4.4) $77 \times 8 + \log(1\%)$ Steve Wilson, 12/10Raytown, MO 615 (2.0) $77 \times 8 - 1$ Jacob Smith, 11/07Leawood, KS 616 (2.0) $77 \times 8 \times 1$ Ashley Barboza, 3/07Overland Park, KS 617 (2.0) $77 \times 8 + 1$ Ashley Barboza, 3/07Overland Park, KS 618 (4.4) $77 \times 8 - \log(1\%)$ Jacob Smith, 12/07Leawood, KS 619 (4.4) $77 \times 8 - \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 620 (2.6) $\dfrac{1-7\%}{(8+7)\%\%}$ Steve Wilson, 3/10Raytown, MO 621 (2.4) $\dfrac{77-8}{.\overline{1}}$ Dave Jones, 10/08Coventry, England 622 (2.2) $\dfrac{7}{1\%} - 78$ Dave Jones, 10/08Coventry, England 623 (2.8) $\dfrac{.7}{(1-.\overline{8})\%} - 7$ Steve Wilson, 4/10Raytown, MO 624 (2.0) $8 \times (77 + 1)$ Brad Anderson, 1/08Overland Park, KS 625 (2.2) $\dfrac{7 \times 7 + 1}{8\%}$ Dave Jones, 11/08Coventry, England 626 (4.6) $\dfrac{7!}{8} - 7 - \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 627 (2.4) $\dfrac{7-.8}{1\%} + 7$ Dave Jones, 11/08Coventry, England 628 (4.8) $\dfrac{7!}{8} - 7 - \log(1\%\pm)$ Steve Wilson, 6/23Lawrence, KS 629 (2.8) $\dfrac{.7}{.\overline{1}\%} - 8 + 7$ Dave Jones, 11/08Coventry, England 630 (2.2) $\dfrac{8 \times 7 + 7}{.1}$ Steve Wilson, 4/08Raytown, MO 631 (2.8) $\dfrac{.7}{.\overline{1}\%} + 8 - 7$ Dave Jones, 11/08Coventry, England 632 (4.6) $\dfrac{7 + \log(1\%)}{8\pmf} + 7$ Steve Wilson, 6/23Lawrence, KS 633 (3.2) $(7 - 1)! - 87$ Steve Wilson, 12/10Raytown, MO 634 (4.6) $\dfrac{7!}{8} + 7 + \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 635 (4.6) $\dfrac{7!}{8} + 7 + \log(1\%)$ Steve Wilson, 12/10Raytown, MO 636 (3.2) $\dfrac{7!}{8} + 7 - 1$ Brad Anderson, 1/08Overland Park, KS 637 (2.8) $\dfrac{.7}{(1-.\overline{8})\%} + 7$ Steve Wilson, 4/10Raytown, MO 638 (2.4) $\dfrac{7-.7}{1\%} + 8$ Dave Jones, 11/08Coventry, England 639 (2.4) $\dfrac{78-7}{.\overline{1}}$ Dave Jones, 12/08Coventry, England 640 (3.4) $\dfrac{7!}{7} - \dfrac{8}{.1}$ Steve Wilson, 12/10Raytown, MO 641 (3.6) $\dfrac{7!}{7} \times .\overline{8} + 1$ Brad Anderson, 5/08Overland Park, KS 642 (3.2) $(7 - 1)! - 78$ Steve Wilson, 12/10Raytown, MO 643 (2.8) $\dfrac{.8}{.\overline{1}\%} - 77$ Dave Jones, 12/08Coventry, England 644 (2.2) $\dfrac{7}{1\%} - 8 \times 7$ Dave Jones, 12/08Coventry, England 645 (2.8) $\dfrac{.7}{.\overline{1}\%} + 8 + 7$ Dave Jones, 12/08Coventry, England 646 (3.6) $\dfrac{ \dfrac{8!\%}{7} + 7}{.1}$ Steve Wilson, 12/10Raytown, MO 647 (3.2) $\dfrac{7!}{8} + 17$ Steve Wilson, 9/08Raytown, MO 648 (2.8) $\dfrac{7}{.\overline{7}} \times \dfrac{8}{.\overline{1}}$ Dave Jones, 12/08Coventry, England 649 (4.0) $\dfrac{7!\pmf}{.\overline{7}\%} + 1^8$ Steve Wilson, 6/23Lawrence, KS 651 (4.2) $\dfrac{7!\pmf}{.\overline{7}\%} + \sqrt{8 + 1}$ Steve Wilson, 6/23Lawrence, KS 654 (4.4) $\dfrac{7!\pmf}{.\overline{7}\%} + (\sqrt{8 + 1})!$ Steve Wilson, 6/23Lawrence, KS 655 (4.0) $\dfrac{7!\pmf}{.\overline{7}\%} + 8 - 1$ Paolo Pellegrini, 6/09Martina Franca, Italy 656 (4.0) $\dfrac{7!\pmf}{.\overline{7}\%} + 8 \times 1$ Steve Wilson, 12/10Raytown, MO 657 (4.0) $\dfrac{7!\pmf}{.\overline{7}\%} + 8 + 1$ Steve Wilson, 12/10Raytown, MO 660 (2.6) $\dfrac{8-.7-.7}{1\%}$ Dave Jones, 1/09Coventry, England 661 (4.8) $\dfrac{7}{1\%} - \ln\sqrt{\exp 78}$ Steve Wilson, 7/23Lawrence, KS 662 (2.8) $\dfrac{1-.7\%}{(8+7)\%\%}$ Steve Wilson, 4/10Raytown, MO 663 (4.6) $17 \times \ln\sqrt{\exp 78}$ Steve Wilson, 8/23Lawrence, KS 664 (3.2) $(7 - 1)! - 8 \times 7$ Steve Wilson, 12/10Raytown, MO 665 (3.6) $\dfrac{8!\pmf}{(7 - 1)\%} - 7$ Steve Wilson, 6/23Lawrence, KS 666 (4.0) $\dfrac{7!\pmf}{.\overline{7}\%} + 18$ Steve Wilson, 12/10Raytown, MO 668 (2.6) $\dfrac{7-1}{.\overline{8}\%} - 7$ Dave Jones, 1/09Coventry, England 671 (2.8) $\dfrac{.8}{.\overline{1}\%} - 7 \times 7$ Dave Jones, 1/09Coventry, England 672 (3.6) $\dfrac{8!\pmf}{\left(7 - 1^7 \right)\%}$ Steve Wilson, 6/23Lawrence, KS 673 (4.8) $\dfrac{7!}{\ln\sqrt{\exp (8 + 7)}} + 1$ Steve Wilson, 8/23Lawrence, KS 675 (3.6) $\dfrac{7 - 1^7}{.\overline{8}\%}$ Steve Wilson, 12/10Raytown, MO 679 (3.6) $\dfrac{8!\pmf}{(7 - 1)\%} + 7$ Steve Wilson, 6/23Lawrence, KS 680 (3.8) $7! \times \sqrt{1.\overline{7}\%} + 8$ Ralph Jeffords, 3/09Centreville, VA 681 (4.8) $(7 - 1)! - \ln\sqrt{\exp 78}$ Steve Wilson, 6/23Lawrence, KS 682 (2.6) $\dfrac{7-1}{.\overline{8}\%} + 7$ Dave Jones, 1/09Coventry, England 685 (2.2) $\dfrac{7}{1\%} - 8 - 7$ Steve Wilson, 8/08Raytown, MO 686 (2.8) $\dfrac{.7}{.\overline{1}\%} + 8 \times 7$ Dave Jones, 1/09Coventry, England 687 (4.8) $\dfrac{\sqrt{7^8}}{\ln\sqrt{\exp 7}} + 1$ Steve Wilson, 8/23Lawrence, KS 689 (4.8) $\dfrac{7}{1\%} - 7 - \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 690 (2.2) $\dfrac{77-8}{.1}$ Dave Jones, 9/08Coventry, England 692 (3.2) $\dfrac{7}{1^7\%} - 8$ Steve Wilson, 6/23Lawrence, KS 693 (2.0) $77 \times (8 + 1)$ Dave Jones, 2/08Coventry, England 695 (2.4) $\dfrac{78}{.\overline{1}} - 7$ Dave Jones, 9/08Coventry, England 696 (2.0) $87 \times (7 + 1)$ Dave Jones, 2/08Coventry, England 697 (4.4) $\dfrac{.\overline{7} - 8\% - .\overline{7}\pmf}{1\pmf}$ Steve Wilson, 7/23Lawrence, KS 698 (4.6) $\dfrac{7}{1\%} + \log((8 - 7)\%)$ Steve Wilson, 12/10Raytown, MO 699 (2.2) $\dfrac{7}{1\%} - 8 + 7$ Dave Jones, 9/08Coventry, England 700 (2.2) $\dfrac{7}{7\%} \times (8 - 1)$ Carolyn Neptune, 6/07Prairie Village, KS 701 (2.2) $\dfrac{7}{1\%} + 8 - 7$ Dave Jones, 9/08Coventry, England 702 (3.2) $\dfrac{7!}{7} - 18$ Steve Wilson, 12/10Raytown, MO 703 (4.6) $\dfrac{7}{1\%} - \log((8 - 7)\pm)$ Steve Wilson, 12/10Raytown, MO 705 (3.2) $(7 - 1)! - 8 - 7$ Steve Wilson, 12/10Raytown, MO 706 (2.8) $\dfrac{.8}{.\overline{1}\%} - 7 - 7$ Dave Jones, 9/08Coventry, England 707 (3.2) $\dfrac{7}{1^8\%} + 7$ Steve Wilson, 6/23Lawrence, KS 708 (2.8) $\dfrac{.7}{.\overline{1}\%} + 78$ Dave Jones, 2/09Coventry, England 709 (2.0) $717 - 8$ Melissa Mitchell, 10/07Kansas City, KS 710 (2.2) $\dfrac{78-7}{.1}$ Dave Jones, 2/09Coventry, England 711 (2.0) $718 - 7$ Melissa Mitchell, 10/07Kansas City, KS 712 (2.8) $8 \times \left( \dfrac{.7}{.\overline{7}\%} - 1 \right)$ Dave Jones, 2/09Coventry, England 713 (2.8) $7 \times \left( \dfrac{.8}{.\overline{7}\%} - 1 \right)$ Dave Jones, 2/09Coventry, England 714 (3.6) $\dfrac{7!}{7} - \left( \sqrt{8+1} \right)!$ Steve Wilson, 12/10Raytown, MO 715 (2.2) $\dfrac{7}{1\%} + 8 + 7$ Kevin Solecki, 10/08Olathe, KS 716 (4.8) $(7 - 1^7)! - \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 717 (2.8) $\dfrac{.7}{.\overline{1}\%} + 87$ Dave Jones, 2/09Coventry, England 718 (3.8) $\dfrac{7!}{7} - 8^{\sqrt{.\overline{1}}}$ Steve Wilson, 12/10Raytown, MO 719 (2.8) $\dfrac{.7}{.\overline{7}\%} \times 8 - 1$ Kevin Schwarz, 2/09Olathe, KS 720 (2.4) $\dfrac{87-7}{.\overline{1}}$ Dave Jones, 5/09Coventry, England 721 (2.8) $\dfrac{.7}{.\overline{7}\%} \times 8 + 1$ Kevin Schwarz, 2/09Olathe, KS 722 (3.8) $\dfrac{7!}{7} + 8^{\sqrt{.\overline{1}}}$ Steve Wilson, 12/10Raytown, MO 723 (2.2) $\dfrac{8}{1\%} - 77$ Kevin Solecki, 10/08Olathe, KS 724 (4.8) $(7 - 1^7)! + \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 725 (2.0) $718 + 7$ Brad Anderson, 1/08Overland Park, KS 726 (3.6) $\dfrac{7!}{7} + \left( \sqrt{8+1} \right)!$ Steve Wilson, 12/10Raytown, MO 727 (2.8) $7 \times \left( \dfrac{.8}{.\overline{7}\%} + 1 \right)$ Dave Jones, 3/09Coventry, England 728 (2.8) $8 \times \left( \dfrac{.7}{.\overline{7}\%} + 1 \right)$ Dave Jones, 3/09Coventry, England 729 (2.4) $\dfrac{7}{.\overline{7}} \times 81$ Dave Jones, 3/09Coventry, England 730 (3.0) $\dfrac{.8}{.\overline{1}\%} + \dfrac{7}{.7}$ Steve Wilson, 12/10Raytown, MO 731 (4.8) $(7 - 1)! + 7 + \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 733 (4.4) $\left(\sqrt{\sqrt{(.\overline{1}\%)^{-8}}}\right)\pm - 77$ Steve Wilson, 8/23Lawrence, KS 734 (2.8) $\dfrac{.8}{.\overline{1}\%} + 7 + 7$ Dave Jones, 3/09Coventry, England 735 (3.2) $(7 - 1)! + 8 + 7$ Steve Wilson, 12/10Raytown, MO 737 (2.4) $\dfrac{8-.7}{1\%} + 7$ Dave Jones, 3/09Coventry, England 738 (3.2) $\dfrac{7!}{7} + 18$ Steve Wilson, 12/10Raytown, MO 739 (4.8) $\dfrac{7}{1\%} + \ln\sqrt{\exp 78}$ Steve Wilson, 7/23Lawrence, KS 743 (2.4) $\dfrac{7-1}{.8\%} - 7$ Dave Jones, 4/09Coventry, England 744 (3.8) $\dfrac{7!}{7} + \dfrac{8}{\sqrt{.\overline{1}}}$ Steve Wilson, 12/10Raytown, MO 748 (4.8) $(7 - 1)! + 7 \times \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 749 (4.6) $7 \times (\cot\arctan(1^8 \%) + 7)$ Steve Wilson, 6/23Lawrence, KS 750 (3.2) $\dfrac{7-1^7}{8 \pmf}$ Steve Wilson, 12/10Raytown, MO 751 (2.2) $\dfrac{8}{1\%} - 7 \times 7$ Dave Jones, 4/09Coventry, England 756 (2.2) $\dfrac{7}{1\%} + 7 \times 8$ Dave Jones, 4/09Coventry, England 757 (2.4) $\dfrac{7-1}{.8\%} + 7$ Dave Jones, 4/09Coventry, England 759 (4.8) $(7 - 1)! + \ln\sqrt{\exp 78}$ Steve Wilson, 6/23Lawrence, KS 760 (4.0) $\dfrac{7}{7 \pmf} - \dfrac{8}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 6/09Martina Franca, Italy 761 (4.4) $\left(\sqrt{\sqrt{(.\overline{1}\%)^{-8}}}\right)\pm - 7 \times 7$ Steve Wilson, 8/23Lawrence, KS 762 (2.2) $\dfrac{77}{.1} - 8$ Steve Wilson, 4/09Raytown, MO 763 (2.0) $771 - 8$ Ed Cockman, 5/07Pleasant Hill, MO 765 (2.4) $\dfrac{78+7}{.\overline{1}}$ Dave Jones, 4/09Coventry, England 766 (4.8) $\dfrac{77}{.1} - \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 767 (4.6) $771 - \ln\sqrt{\exp 8}$ Steve Wilson, 6/23Lawrence, KS 769 (2.8) $\dfrac{.8}{.\overline{1}\%} + 7 \times 7$ Dave Jones, 5/09Coventry, England 770 (2.8) $\dfrac{7-.7}{.\overline{81}\%}$ Dave Jones, 5/09Coventry, England 771 (3.6) $\sqrt{ \sqrt{ \sqrt{ 771^8}}}$ Kevin Schwarz, 3/09Olathe, KS 772 (4.6) $778 + \log(1\pmm)$ Steve Wilson, 6/23Lawrence, KS 773 (2.2) $\dfrac{78}{.1} - 7$ Steve Wilson, 4/09Raytown, MO 774 (2.0) $781 - 7$ Dave Jones, 8/08Coventry, England 775 (2.8) $\dfrac{7-.7-.1}{.8\%}$ Dave Jones, 5/09Coventry, England 776 (2.4) $\dfrac{87}{.\overline{1}} - 7$ Dave Jones, 5/09Coventry, England 777 (2.0) $778 - 1$ Melissa Mitchell, 10/07Kansas City, KS 778 (2.0) $778 \times 1$ Travis Meek, 10/07Lenexa, KS 779 (2.0) $778 + 1$ Ed Cockman, 5/07Pleasant Hill, MO 780 (3.2) $\dfrac{7.8}{1^7 \%}$ Paolo Pellegrini, 8/09Martina Franca, Italy 781 (4.4) $778 - \log(1\pm)$ Steve Wilson, 12/10Raytown, MO 782 (4.6) $778 - \log(1\%\%)$ Steve Wilson, 12/10Raytown, MO 783 (3.0) $\dfrac{.8\overline{7}}{.\overline{1}\%} - 7$ Paolo Pellegrini, 6/09Martina Franca, Italy 784 (3.2) $\dfrac{.\overline{7}}{.1\%} + 7 \times .\overline{8}$ Paolo Pellegrini, 8/09Martina Franca, Italy 785 (3.2) $\dfrac{.\overline{7}}{.1\%} + 8 - .\overline{7}$ Paolo Pellegrini, 8/09Martina Franca, Italy 786 (2.0) $787 - 1$ Regina Hillman, 9/07Bucyrus, KS 787 (2.0) $787 \times 1$ Brad Anderson, 5/08Overland Park, KS 788 (2.0) $787 + 1$ Regina Hillman, 9/07Bucyrus, KS 789 (4.4) $787 - \log(1\%)$ Steve Wilson, 12/10Raytown, MO 790 (2.4) $\dfrac{87}{.\overline{1}} + 7$ Paolo Pellegrini, 8/09Martina Franca, Italy 791 (2.6) $\dfrac{8}{1\%} - \dfrac{7}{.\overline{7}}$ Steve Wilson, 4/10Raytown, MO 792 (2.2) $8 \times \left( \dfrac{7}{7\%} - 1 \right)$ Steve Wilson, 4/10Raytown, MO 793 (2.2) $7 \times \left( \dfrac{8}{7\%} - 1 \right)$ Steve Wilson, 5/10Raytown, MO 794 (3.6) $\dfrac{8!}{7!\%} - 7 + 1$ Steve Wilson, 8/23Lawrence, KS 795 (4.8) $\dfrac{8}{1\%} + \log\left( \dfrac{7\%\pmf}{7} \right)$ Steve Wilson, 6/23Lawrence, KS 796 (4.4) $\left(\sqrt{\sqrt{(.\overline{1}\%)^{-8}}}\right)\pm - 7 - 7$ Steve Wilson, 8/23Lawrence, KS 797 (2.8) $\dfrac{.8}{.\overline{1}\%} + 77$ Steve Wilson, 5/10Raytown, MO 798 (3.2) $(7 - 1)! + 78$ Steve Wilson, 12/10Raytown, MO 799 (2.2) $\dfrac{8}{1\%} - \dfrac77$ Kevin Solecki, 10/08Olathe, KS 800 (2.2) $\dfrac{7}{7\%} \times 8 \times 1$ Carolyn Neptune, 6/07Prairie Village, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).