## Integermania!

#### First Four Primes

The first four prime numbers are 2, 3, 5, and 7. Create each of the positive integers using one copy of each number, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601+).

 1201 (3.6) $\dfrac{3! + (7-2) ‰}{5 ‰}$ Steve Wilson, 9/09Raytown, MO 1202 (3.2) $(3 + 7) \times 5! + 2$ Paolo Pellegrini, 9/09Martina Franca, Italy 1203 (3.6) $\sqrt{ \dfrac{72}{5\% ‰}} + 3$ Paolo Pellegrini, 9/09Martina Franca, Italy 1205 (3.0) $\dfrac{.\overline{3}}{2.\overline{7}\%\%} + 5$ Paolo Pellegrini, 9/09Martina Franca, Italy 1206 (3.8) $\sqrt{ \dfrac{72}{5\% ‰}} + 3!$ Steve Wilson, 9/09Raytown, MO 1207 (2.4) $2 \times \dfrac{3}{.5\%} + 7$ Steve Wilson, 9/08Raytown, MO 1208 (3.2) $\sqrt[.2]{3} \times 5 - 7$ Paolo Pellegrini, 9/09Martina Franca, Italy 1209 (3.4) $\dfrac{3!}{5 ‰} + 7 + 2$ Paolo Pellegrini, 9/09Martina Franca, Italy 1210 (3.4) $\dfrac{5^3}{2\%} - 7!$ Paolo Pellegrini, 9/09Martina Franca, Italy 1211 (3.6) $\dfrac{3! + 2\%}{5 ‰} + 7$ Paolo Pellegrini, 9/09Martina Franca, Italy 1214 (2.4) $2 \times \left( \dfrac{3}{.5\%} + 7 \right)$ Dave Jones, 10/08Coventry, England 1215 (3.0) $3^{7-2} \times 5$ Jackson Jennings, 3/15Shawnee, KS 1218 (3.0) $35^2 - 7$ Joseph Mavungu, 5/03Olathe, KS 1221 (2.4) $3 \times \left( \dfrac{2}{.5\%} + 7 \right)$ Dave Jones, 10/08Coventry, England 1225 (2.2) $35 \times \dfrac{7}{.2}$ Dave Jones, 5/06Coventry, England 1228 (2.6) $\dfrac{7}{.\overline{5}\%} - 32$ Steve Wilson, 9/08Raytown, MO 1232 (3.0) $35^2 + 7$ Tim Murphy, 5/03Olathe, KS 1237 (2.6) $\dfrac{7}{.\overline{5}\%} - 23$ Steve Wilson, 9/08Raytown, MO 1243 (2.6) $\dfrac{3 - .5}{.2\%} - 7$ Steve Wilson, 9/08Raytown, MO 1245 (2.8) $\dfrac{7}{.\overline{5}\%} - \dfrac{3}{.2}$ Steve Wilson, 9/08Raytown, MO 1248 (2.6) $\dfrac{5}{(.7 - .3)\%} - 2$ Steve Wilson, 9/08Raytown, MO 1249 (3.2) $37^2 - 5!$ Steve Wilson, 11/06Raytown, MO 1250 (2.2) $\dfrac{75}{2 \times 3\%}$ Dave Jones, 5/06Coventry, England 1252 (2.6) $\dfrac{5}{(.7 - .3)\%} + 2$ Steve Wilson, 9/08Raytown, MO 1254 (2.6) $\dfrac{7}{.\overline{5}\%} - 3 \times 2$ Steve Wilson, 9/08Raytown, MO 1255 (2.6) $\dfrac{7}{.\overline{5}\%} - 3 - 2$ Steve Wilson, 9/08Raytown, MO 1257 (2.6) $\dfrac{3 - .5}{.2\%} + 7$ Steve Wilson, 9/08Raytown, MO 1259 (2.6) $\dfrac{7}{.\overline{5}\%} - 3 + 2$ Steve Wilson, 9/08Raytown, MO 1260 (2.6) $\dfrac{3.5}{.2\overline{7}\%}$ Steve Wilson, 8/08Raytown, MO 1261 (2.6) $\dfrac{7}{.\overline{5}\%} - 2 + 3$ Steve Wilson, 9/08Raytown, MO 1265 (2.6) $\dfrac{7}{.\overline{5}\%} + 3 + 2$ Steve Wilson, 9/08Raytown, MO 1266 (2.6) $\dfrac{7}{.\overline{5}\%} + 3 \times 2$ Steve Wilson, 9/08Raytown, MO 1275 (2.8) $\dfrac{7}{.\overline{5}\%} + \dfrac{3}{.2}$ Steve Wilson, 9/08Raytown, MO 1283 (2.6) $\dfrac{7}{.\overline{5}\%} + 23$ Steve Wilson, 9/08Raytown, MO 1292 (2.6) $\dfrac{7}{.\overline{5}\%} + 32$ Steve Wilson, 9/08Raytown, MO 1300 (2.2) $\dfrac{3 \times 7 + 5}{2\%}$ Dave Jones, 5/06Coventry, England 1311 (2.0) $23 \times 57$ Joseph Mavungu, 3/03Olathe, KS 1364 (3.0) $37^2 - 5$ Steve Wilson, 11/06Raytown, MO 1365 (2.0) $273 \times 5$ Dave Jones, 5/06Coventry, England 1368 (2.4) $\dfrac{7}{.5\%} - 32$ Steve Wilson, 9/08Raytown, MO 1374 (3.0) $37^2 + 5$ Steve Wilson, 11/06Raytown, MO 1377 (2.4) $\dfrac{7}{.5\%} - 23$ Steve Wilson, 9/08Raytown, MO 1380 (2.2) $\dfrac{72 - 3}{5\%}$ Dave Jones, 5/06Coventry, England 1385 (2.6) $\dfrac{7}{.5\%} - \dfrac{3}{.2}$ Steve Wilson, 9/08Raytown, MO 1394 (2.4) $\dfrac{7}{.5\%} - 2 \times 3$ Steve Wilson, 9/08Raytown, MO 1395 (2.4) $\dfrac{7}{.5\%} - 2 - 3$ Steve Wilson, 9/08Raytown, MO 1399 (2.4) $\dfrac{7}{.5\%} - 3 + 2$ Steve Wilson, 9/08Raytown, MO 1400 (2.2) $\dfrac{35-7}{2\%}$ Dave Jones, 5/06Coventry, England 1401 (2.4) $\dfrac{7}{.5\%} + 3 - 2$ Steve Wilson, 9/08Raytown, MO 1405 (2.4) $\dfrac{7}{.5\%} + 3 + 2$ Steve Wilson, 9/08Raytown, MO 1406 (2.4) $\dfrac{7}{.5\%} + 3 \times 2$ Steve Wilson, 9/08Raytown, MO 1410 (2.8) $\dfrac{7}{.\overline{5}\%} + \dfrac{3}{2\%}$ Steve Wilson, 9/08Raytown, MO 1415 (2.6) $\dfrac{7}{.5\%} + \dfrac{3}{.2}$ Steve Wilson, 9/08Raytown, MO 1420 (2.2) $\dfrac{73-2}{5\%}$ Dave Jones, 6/06Coventry, England 1423 (2.4) $\dfrac{7}{.5\%} + 23$ Steve Wilson, 9/08Raytown, MO 1431 (2.0) $27 \times 53$ Dave Jones, 6/06Coventry, England 1432 (2.4) $\dfrac{7}{.5\%} + 32$ Steve Wilson, 9/08Raytown, MO 1433 (3.4) $5! \times 3! \times 2 - 7$ Gabriel Morel, 5/13Bronx, NY 1437 (2.2) $\dfrac{72}{5\%} - 3$ Dave Jones, 6/06Coventry, England 1440 (2.6) $\dfrac{7 + 3 - 2}{.\overline{5}\%}$ Steve Wilson, 9/08Raytown, MO 1443 (2.2) $\dfrac{72}{5\%} + 3$ Dave Jones, 6/06Coventry, England 1446 (2.2) $\dfrac{723}{.5}$ Dave Jones, 6/06Coventry, England 1447 (3.4) $5! \times 3! \times 2 + 7$ Gabriel Morel, 5/13Bronx, NY 1458 (2.2) $\dfrac{73}{5\%} - 2$ Dave Jones, 6/06Coventry, England 1462 (2.2) $\dfrac{73}{5\%} + 2$ Dave Jones, 6/06Coventry, England 1464 (2.2) $\dfrac{732}{.5}$ Dave Jones, 6/06Coventry, England 1470 (2.0) $2 \times 735$ Gunnar Gnad, 12/04Luxembourg, Luxembourg 1480 (2.2) $37 \times \dfrac{2}{5\%}$ Dave Jones, 6/06Coventry, England 1482 (2.6) $\dfrac{3 - 5\%}{.2\%} + 7$ Dave Jones, 3/07Coventry, England 1489 (3.2) $37^2 + 5!$ Steve Wilson, 11/06Raytown, MO 1495 (2.6) $\dfrac{7-2}{.\overline{3}\%} - 5$ Steve Wilson, 9/08Raytown, MO 1500 (2.2) $(7 + 2) \times \dfrac{5}{3\%}$ Dave Jones, 6/06Coventry, England 1505 (2.6) $\dfrac{7-2}{.\overline{3}\%} + 5$ Steve Wilson, 9/08Raytown, MO 1506 (2.0) $753 \times 2$ Tim Murphy, 5/03Olathe, KS 1512 (3.2) $\dfrac{3 \times 7!}{2 \times 5}$ Gunnar Gnad, 12/04Luxembourg, Luxembourg 1550 (2.6) $\dfrac{7}{.5\%} + \dfrac{3}{2\%}$ Steve Wilson, 9/08Raytown, MO 1560 (3.4) $5! \times 7 + (3 \times 2)!$ Harman Tiwana, 10/12Lenexa, KS 1575 (3.0) $(3 \times 5)^2 \times 7$ David Caton, 10/04Shawnee, KS 1581 (2.0) $527 \times 3$ Josh Brown, 7/04Lawrence, KS 1599 (5.0) ${}_{57} C_2 + 3$ Lucas Rodriguez, 12/04Lenexa, KS 1600 (2.2) $\dfrac{5 \times 7 - 3}{2\%}$ Dave Jones, 7/06Coventry, England

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601+).