\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom8}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\antilog}{antilog} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\csch}{csch} \)
The first four prime numbers are 2, 3, 5, and 7. Create each of the positive integers using one copy of each number, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.
PREVIOUS Page, Page 5 (1601-2000), NEXT Page, ... Index to All Pages.
1605 (2.8) $\dfrac{5 + \dfrac{.7}{2}}{.\overline{3}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1607 (2.6) $\dfrac{5 - .2}{.3\%} + 7$ Steve Wilson, 8/25 Lawrence, KS |
1610 (2.8) $\dfrac{3.5\overline{7}}{.\overline{2}\%}$ Steve Wilson, 11/07 Raytown, MO |
||||||||
1613 (3.4) $\dfrac{3}{2\pmf} + 5! - 7$ Steve Wilson, 8/25 Lawrence, KS |
1614 (3.4) $\dfrac{2^3 + 7\%}{5\pmf}$ Steve Wilson, 8/25 Lawrence, KS |
1617 (2.6) $\dfrac{7 + 2}{.\overline{5}\%} - 3$ Steve Wilson, 8/25 Lawrence, KS |
1620 (2.2) $\dfrac{3}{5\%} \times 27$ Dave Jones, 7/06 Coventry, England |
|||||||
1623 (2.6) $\dfrac{7 + 2}{.\overline{5}\%} + 3$ Steve Wilson, 8/25 Lawrence, KS |
1625 (2.6) $\dfrac{2 - .7}{(5 + 3)\%\%}$ Steve Wilson, 8/25 Lawrence, KS |
1626 (3.8) $\dfrac{7 + 2}{.\overline{5}\%} + 3!$ Steve Wilson, 8/25 Lawrence, KS |
1627 (3.4) $\dfrac{3}{2\pmf} + 5! + 7$ Steve Wilson, 8/25 Lawrence, KS |
1628 (3.2) $\dfrac{7!}{3} - 52$ Steve Wilson, 8/25 Lawrence, KS |
||||||
1635 (2.0) $327 \times 5$ Dave Jones, 7/06 Coventry, England |
1638 (3.2) $7 \times 2 \times (5! - 3)$ Steve Wilson, 8/25 Lawrence, KS |
1640 (2.6) $\dfrac{3}{.2\%} + \dfrac{7}{5\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||||||
1642 (3.4) $\dfrac{7! - 5!}{3} + 2$ Steve Wilson, 8/25 Lawrence, KS |
1644 (2.8) $\dfrac{5 - (7 - .2)\%}{.3\%}$ Steve Wilson, 8/25 Lawrence, KS |
1645 (2.0) $235 \times 7$ John Kite, 3/03 Lenexa, KS |
1646 (4.0) $\dfrac{(3!)!}{.\overline{5}} + \dfrac{7}{2\%}$ Steve Wilson, 8/25 Lawrence, KS |
1647 (3.6) $3^7 - \dfrac{5!}{.\overline{2}}$ Steve Wilson, 8/25 Lawrence, KS |
1648 (3.2) $\dfrac{7!}{3} - 2^5$ Steve Wilson, 8/25 Lawrence, KS |
1650 (2.6) $\dfrac{5 - (7 - 2)\%}{.3\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||
1653 (2.6) $\dfrac{5 - 2\%}{.3\%} - 7$ Steve Wilson, 8/25 Lawrence, KS |
1655 (2.6) $\dfrac{5 - \dfrac{7\%}{2}}{.3\%}$ Steve Wilson, 8/25 Lawrence, KS |
1656 (4.4) $\dfrac{7!\pmf}{.\overline{3}\%} + 5!^2\%$ Steve Wilson, 8/25 Lawrence, KS |
1657 (3.8) $\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 7^3$ Steve Wilson, 8/25 Lawrence, KS |
1659 (2.8) $\dfrac{5 - .2\%}{.3\%} - 7$ Steve Wilson, 8/25 Lawrence, KS |
1660 (2.6) $\dfrac{3.7}{.\overline{2}\%} - 5$ Steve Wilson, 8/25 Lawrence, KS |
|||||
1662 (2.8) $\dfrac{5 - 7 \times .2\%}{.3\%}$ Steve Wilson, 8/25 Lawrence, KS |
1664 (4.2) $\dfrac{.5 + 7!\pmf}{.\overline{3}\%} + 2$ Steve Wilson, 8/25 Lawrence, KS |
1665 (2.8) $\dfrac{7 - 2 - .5\%}{.3\%}$ Steve Wilson, 8/25 Lawrence, KS |
1666 (3.2) $7 \times (\sqrt[.2]{3} - 5)$ Steve Wilson, 8/25 Lawrence, KS |
1667 (2.6) $\dfrac{5 - 2\%}{.3\%} + 7$ Steve Wilson, 8/25 Lawrence, KS |
1668 (4.2) $\dfrac{7!\pm + .52\phantom8}{.\overline{3}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1670 (2.6) $\dfrac{3.7}{.\overline{2}\%} + 5$ Steve Wilson, 8/25 Lawrence, KS |
||||
1671 (2.8) $\dfrac{5 + .7\%}{.3\%} + 2$ Steve Wilson, 8/25 Lawrence, KS |
1673 (2.8) $\dfrac{5 - .2\%}{.3\%} + 7$ Steve Wilson, 8/25 Lawrence, KS |
1674 (2.6) $\dfrac{7 + 2.3}{.\overline{5}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1675 (2.4) $(7 - .3) \times \dfrac{5}{2\%}$ Steve Wilson, 8/25 Lawrence, KS |
1676 (3.4) $\dfrac{7!}{3} - \dfrac{2}{.5}$ Steve Wilson, 8/25 Lawrence, KS |
1677 (3.2) $\dfrac{7!}{3} - 5 + 2$ Steve Wilson, 8/25 Lawrence, KS |
1678 (3.6) $\dfrac{7!}{3} - \sqrt{\sqrt[.5]{2}}$ Steve Wilson, 8/25 Lawrence, KS |
1679 (3.2) $\dfrac{7! - 5 + 2}{3}$ Steve Wilson, 8/25 Lawrence, KS |
1680 (2.8) $\dfrac{7 \times 2}{(.5 + .\overline{3})\%}$ Steve Wilson, 8/25 Lawrence, KS |
||
1681 (3.2) $\dfrac{7! + 5 - 2}{3}$ Steve Wilson, 8/25 Lawrence, KS |
1682 (3.6) $\dfrac{7!}{3} + \sqrt{\sqrt[.5]{2}}$ Steve Wilson, 8/25 Lawrence, KS |
1683 (3.2) $\dfrac{7!}{3} + 5 - 2$ Steve Wilson, 8/25 Lawrence, KS |
1684 (3.4) $\dfrac{7!}{3} + \dfrac{2}{.5}$ Steve Wilson, 8/25 Lawrence, KS |
1685 (3.4) $\dfrac{7!}{3} + \sqrt{5^2}$ Steve Wilson, 8/25 Lawrence, KS |
1686 (3.4) $\dfrac{7!}{3} + (5 - 2)!$ Steve Wilson, 8/25 Lawrence, KS |
1687 (3.0) $(3^5 - 2) \times 7$ Steve Wilson, 2/07 Raytown, MO |
1688 (2.6) $\dfrac{5 + 7\%}{.3\%} - 2$ Steve Wilson, 8/25 Lawrence, KS |
1690 (2.8) $\dfrac{3.7\overline{5}}{.\overline{2}\%}$ Steve Wilson, 8/25 Lawrence, KS |
||
1692 (2.6) $\dfrac{5 + 7\%}{.3\%} + 2$ Steve Wilson, 8/25 Lawrence, KS |
1694 (3.6) $2 \times ((3!)! + 5! + 7)$ Steve Wilson, 8/25 Lawrence, KS |
1695 (2.8) $\dfrac{3.\overline{7}}{.\overline{2}\%} - 5$ Steve Wilson, 8/25 Lawrence, KS |
1696 (3.2) $7 \times \sqrt[.2]{3} - 5$ Steve Wilson, 8/25 Lawrence, KS |
1699 (3.0) $3^5 \times 7 - 2$ Steve Wilson, 2/07 Raytown, MO |
1700 (2.4) $\dfrac{7 + \dfrac32}{.5\%}$ Steve Wilson, 8/25 Lawrence, KS |
|||||
1701 (3.2) $3^5 \times \sqrt{7^2}$ Steve Wilson, 8/25 Lawrence, KS |
1703 (3.0) $3^5 \times 7 + 2$ Steve Wilson, 2/07 Raytown, MO |
1704 (2.8) $\dfrac{5.7 - 2\%}{.\overline{3}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1705 (2.8) $\dfrac{3.\overline{7}}{.\overline{2}\%} + 5$ Steve Wilson, 8/25 Lawrence, KS |
1706 (3.2) $7 \times \sqrt[.2]{3} + 5$ Steve Wilson, 8/25 Lawrence, KS |
1708 (2.6) $\dfrac{5.7}{.\overline{3}\%} - 2$ Steve Wilson, 8/25 Lawrence, KS |
1710 (2.4) $\dfrac{52 - .7}{3\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||
1711 (3.6) $\dfrac{5! - .23}{7\%}$ Steve Wilson, 8/25 Lawrence, KS |
1712 (2.6) $\dfrac{5.7}{.\overline{3}\%} + 2$ Steve Wilson, 8/25 Lawrence, KS |
1713 (3.0) $7^3 \times 5 - 2$ Bridget Osei-Bonsu, 10/04 Lenexa, KS |
1714 (3.2) $(7^3 - .2) \times 5$ Steve Wilson, 2/07 Raytown, MO |
1715 (2.4) $\dfrac{35 - .7}{2\%}$ Steve Wilson, 8/25 Lawrence, KS |
1716 (2.0) $572 \times 3$ Josh Brown, 7/04 Lawrence, KS |
1717 (3.0) $7^3 \times 5 + 2$ Bridget Osei-Bonsu, 10/04 Lenexa, KS |
1718 (3.4) $\dfrac{7! + 5!}{3} - 2$ Steve Wilson, 8/25 Lawrence, KS |
1720 (3.4) $\dfrac{7!}{3} + \dfrac{2}{5\%}$ Steve Wilson, 8/25 Lawrence, KS |
||
1722 (3.2) $7 \times 2 \times (5! + 3)$ Steve Wilson, 8/25 Lawrence, KS |
1723 (4.4) $(\antilog 5)\% + 723$ Steve Wilson, 8/25 Lawrence, KS |
1725 (2.0) $23 \times 75$ Dave Jones, 7/06 Coventry, England |
1726 (3.0) $(7 + 5)^3 - 2$ Steve Wilson, 8/25 Lawrence, KS |
1727 (4.0) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 73$ Steve Wilson, 8/25 Lawrence, KS |
1728 (3.2) $(7 + \sqrt{25})^3$ Kimberly Grosdidier, 12/05 Eudora, KS |
1729 (2.2) $7 \times \left( \dfrac{5}{2\%} - 3 \right)$ Dave Jones, 7/06 Coventry, England |
1730 (3.0) $(7 + 5)^3 + 2$ Steve Wilson, 8/25 Lawrence, KS |
|||
1731 (2.4) $\dfrac{52 - 7\%}{3\%}$ Steve Wilson, 8/25 Lawrence, KS |
1732 (4.4) $(\antilog 5)\% + 732$ Steve Wilson, 8/25 Lawrence, KS |
1735 (2.2) $5 \times \left( \dfrac{7}{2\%} - 3 \right)$ Dave Jones, 7/06 Coventry, England |
1736 (3.2) $7 \times (\sqrt[.2]{3} + 5)$ Steve Wilson, 8/25 Lawrence, KS |
1740 (2.6) $\dfrac{7 + 2 - .3}{.5\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||||
1743 (2.2) $\dfrac{35}{2\%} - 7$ Dave Jones, 7/06 Coventry, England |
1744 (3.4) $\dfrac{7 \times 5}{2\%} - 3!$ Steve Wilson, 8/25 Lawrence, KS |
1746 (3.8) $\dfrac{3^2 + .7}{.\overline{5}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1747 (2.2) $7 \times \dfrac{5}{2\%} - 3$ Dave Jones, 7/06 Coventry, England |
1750 (2.4) $\dfrac{7}{(5 - 3) \times .2\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||||
1752 (4.2) $\dfrac{7!\pmf}{.\overline{3}\%} + 2 \times 5!$ Steve Wilson, 8/25 Lawrence, KS |
1753 (2.2) $7 \times \dfrac{5}{2\%} + 3$ Dave Jones, 7/06 Coventry, England |
1756 (3.4) $\dfrac{7 \times 5}{2\%} + 3!$ Steve Wilson, 8/25 Lawrence, KS |
1757 (2.2) $\dfrac{35}{2\%} + 7$ Dave Jones, 7/06 Coventry, England |
1758 (3.6) $\left(\dfrac{7!}{5!}\right)^2 + 3!$ Steve Wilson, 8/25 Lawrence, KS |
1760 (4.0) $\dfrac{3^2 + .\overline{7}}{.\overline{5}\%}$ Steve Wilson, 8/25 Lawrence, KS |
|||||
1761 (3.4) $\left(\dfrac{7!}{5!}\right)^2 - 3$ Steve Wilson, 8/25 Lawrence, KS |
1762 (3.4) $7! \times .35 - 2$ Steve Wilson, 8/25 Lawrence, KS |
1763 (4.0) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 37$ Steve Wilson, 8/25 Lawrence, KS |
1764 (2.8) $\dfrac{7 + 3 - .2}{.\overline{5}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1765 (2.2) $5 \times \left( \dfrac{7}{2\%} + 3 \right)$ Dave Jones, 7/06 Coventry, England |
1766 (3.4) $7! \times .35 + 2$ Steve Wilson, 8/25 Lawrence, KS |
1767 (3.4) $\left(\dfrac{7!}{5!}\right)^2 + 3$ Steve Wilson, 8/25 Lawrence, KS |
1768 (4.6) $(\antilog 5)\% + 2^7 \times 3!$ Steve Wilson, 8/25 Lawrence, KS |
1770 (2.8) $\dfrac{5.7 + .2}{.\overline{3}\%}$ Steve Wilson, 8/25 Lawrence, KS |
||
1771 (2.0) $253 \times 7$ Dave Jones, 7/06 Coventry, England |
1773 (4.6) $\dfrac{\antilog 3}{.\overline{5}} - 27$ Steve Wilson, 8/25 Lawrence, KS |
1774 (4.4) $2 \times (\antilog 3 - 5! + 7)$ Steve Wilson, 8/25 Lawrence, KS |
1776 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 7 \times 32$ Steve Wilson, 8/25 Lawrence, KS |
1777 (3.0) $\dfrac{3.\overline{5}}{.2\%} - .\overline{7}$ Steve Wilson, 8/25 Lawrence, KS |
1779 (4.0) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 7 \times 3$ Steve Wilson, 8/25 Lawrence, KS |
1780 (3.4) $5 \times \left( \dfrac{7}{2\%} + 3! \right)$ Steve Wilson, 8/25 Lawrence, KS |
||||
1784 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 72 \times 3$ Steve Wilson, 8/25 Lawrence, KS |
1785 (2.2) $\dfrac{357}{.2}$ Dave Jones, 7/06 Coventry, England |
1786 (4.6) $\dfrac{\antilog 3}{.\overline{5}} - 7 \times 2$ Steve Wilson, 8/25 Lawrence, KS |
1787 (4.2) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 7 - 3!$ Steve Wilson, 8/25 Lawrence, KS |
1788 (3.6) $\dfrac{7 + 2 - 3!\%}{5\pmf}$ Steve Wilson, 8/25 Lawrence, KS |
1790 (3.8) $\dfrac{(3!)!}{.5} + \dfrac{7}{2\%}$ Steve Wilson, 8/25 Lawrence, KS |
|||||
1791 (4.6) $\dfrac{\antilog 3}{.\overline{5}} - 7 - 2$ Steve Wilson, 8/25 Lawrence, KS |
1792 (3.0) $7 \times 2^{5 + 3}$ Steve Wilson, 8/25 Lawrence, KS |
1793 (3.2) $\dfrac{.3 - .2}{.\overline{5}\%\%} - 7$ Steve Wilson, 8/25 Lawrence, KS |
1794 (2.6) $\dfrac{7 + 2 - 3\%}{.5\%}$ Steve Wilson, 8/25 Lawrence, KS |
1795 (2.6) $\dfrac{7 - 3}{.\overline{2}\%} - 5$ Steve Wilson, 8/25 Lawrence, KS |
1796 (4.0) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 7 + 3$ Steve Wilson, 8/25 Lawrence, KS |
1797 (2.4) $\dfrac{7 + 2}{.5\%} - 3$ Steve Wilson, 8/25 Lawrence, KS |
1798 (2.6) $\dfrac{7 + 3}{.\overline{5}\%} - 2$ Steve Wilson, 8/25 Lawrence, KS |
1799 (4.2) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 7 + 3!$ Steve Wilson, 8/25 Lawrence, KS |
1800 (2.2) $\dfrac{3}{2\%} \times (7 + 5)$ Dave Jones, 7/06 Coventry, England |
|
1801 (4.2) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 - 3!$ Steve Wilson, 8/25 Lawrence, KS |
1802 (2.6) $\dfrac{7 + 3}{.\overline{5}\%} + 2$ Steve Wilson, 8/25 Lawrence, KS |
1803 (2.4) $\dfrac{7 + 2}{.5\%} + 3$ Steve Wilson, 8/25 Lawrence, KS |
1804 (4.0) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 - 3$ Steve Wilson, 8/25 Lawrence, KS |
1805 (2.6) $\dfrac{7 - 3}{.\overline{2}\%} + 5$ Steve Wilson, 8/25 Lawrence, KS |
1806 (2.6) $\dfrac{7 + 2 + 3\%}{.5\%}$ Steve Wilson, 8/25 Lawrence, KS |
1807 (3.2) $\dfrac{.3 - .2}{.\overline{5}\%\%} + 7$ Steve Wilson, 8/25 Lawrence, KS |
1809 (4.6) $\dfrac{\antilog 3}{.\overline{5}} + 7 + 2$ Steve Wilson, 8/25 Lawrence, KS |
1810 (4.0) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 + 3$ Steve Wilson, 8/25 Lawrence, KS |
||
1812 (3.6) $\dfrac{7 + 2 + 3!\%}{5\pmf}$ Steve Wilson, 8/25 Lawrence, KS |
1813 (4.2) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 + 3!$ Steve Wilson, 8/25 Lawrence, KS |
1814 (4.6) $\dfrac{\antilog 3}{.\overline{5}} + 7 \times 2$ Steve Wilson, 8/25 Lawrence, KS |
||||||||
1821 (3.4) $7 \times \sqrt[.2]{3} + 5!$ Steve Wilson, 8/25 Lawrence, KS |
1824 (2.0) $57 \times 32$ Joseph Mavungu, 5/03 Olathe, KS |
1825 (2.0) $25 \times 73$ Dave Jones, 8/06 Coventry, England |
1827 (4.6) $\dfrac{\antilog 3}{.\overline{5}} + 27$ Steve Wilson, 8/25 Lawrence, KS |
|||||||
1835 (4.8) $\dfrac{\antilog 3}{.\overline{5}} + \dfrac{7}{.2}$ Steve Wilson, 8/25 Lawrence, KS |
1836 (2.6) $\dfrac{7 + 3.2}{.\overline{5}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1837 (4.0) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 37$ Steve Wilson, 8/25 Lawrence, KS |
1839 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 7 \times 23$ Steve Wilson, 8/25 Lawrence, KS |
1840 (2.8) $\dfrac{7 + 3.\overline{2}}{.\overline{5}\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||||
1842 (4.2) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 \times 3!$ Steve Wilson, 8/25 Lawrence, KS |
1843 (4.2) $\sqrt{\dfrac{.5}{.\overline{2}\pmmf}} + 7^3$ Steve Wilson, 8/25 Lawrence, KS |
1845 (2.2) $\dfrac{37}{2\%} - 5$ Dave Jones, 10/06 Coventry, England |
1849 (3.4) $\sqrt[.5]{7^2 - 3!}$ Steve Wilson, 8/25 Lawrence, KS |
1850 (2.8) $\dfrac{7}{.\overline{3}\%} - \dfrac{5}{2\%}$ Steve Wilson, 9/08 Raytown, MO |
||||||
1854 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 73 \times 2$ Steve Wilson, 8/25 Lawrence, KS |
1855 (2.2) $\dfrac{37}{2\%} + 5$ Dave Jones, 10/06 Coventry, England |
1856 (4.4) $\dfrac{\antilog 3 - 72}{.5}$ Steve Wilson, 8/25 Lawrence, KS |
1860 (2.0) $372 \times 5$ Dave Jones, 8/06 Coventry, England |
|||||||
1866 (4.4) $2 \times (\antilog 3 - 7) - 5!$ Steve Wilson, 8/25 Lawrence, KS |
||||||||||
1872 (4.6) $2 \times \antilog 3 - (.5)^{-7}$ Steve Wilson, 8/25 Lawrence, KS |
1873 (4.0) $\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 73$ Steve Wilson, 8/25 Lawrence, KS |
1875 (2.2) $\dfrac{375}{.2}$ Dave Jones, 10/06 Coventry, England |
1876 (4.6) $\ln\sqrt{\exp 3752}$ Steve Wilson, 8/25 Lawrence, KS |
1880 (3.6) $\dfrac{2}{(7 + 3)\%\%} - 5!$ Steve Wilson, 8/25 Lawrence, KS |
||||||
1886 (4.2) $2 \times (\antilog 3 - 57)$ Steve Wilson, 8/25 Lawrence, KS |
1887 (4.4) $2 \times \antilog 3 - 5! + 7$ Steve Wilson, 8/25 Lawrence, KS |
1890 (2.6) $\dfrac{7 \times 3}{2 \times .\overline{5}\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||||||
1898 (2.2) $\dfrac{57}{3\%} - 2$ Dave Jones, 10/06 Coventry, England |
1900 (2.2) $\dfrac{5 \times 7 + 3}{2\%}$ Dave Jones, 2/07 Coventry, England |
|||||||||
1902 (2.2) $\dfrac{57}{3\%} + 2$ Dave Jones, 10/06 Coventry, England |
1908 (2.4) $\dfrac{53}{2.\overline{7}\%}$ Steve Wilson, 8/25 Lawrence, KS |
|||||||||
1912 (4.4) $\dfrac{7!\pmf}{.\overline{3}\%} + (5\%)^{-2}$ Steve Wilson, 8/25 Lawrence, KS |
1916 (3.8) $\dfrac{5! - 7!\pmf}{3 \times 2\%}$ Steve Wilson, 8/25 Lawrence, KS |
1920 (2.8) $\dfrac{5 + 7 \times .2}{.\overline{3}\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||||||
1924 (2.0) $52 \times 37$ Cate Henderson, 5/05 Merriam, KS |
1925 (3.0) $\dfrac{3.\overline{7} + .5}{.\overline{2}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1926 (2.8) $\dfrac{5 \times 3 - 2\%}{.\overline{7}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1927 (3.8) $\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 73$ Steve Wilson, 8/25 Lawrence, KS |
1928 (3.6) $\dfrac{5!}{3!\%} - 72$ Steve Wilson, 8/25 Lawrence, KS |
1929 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 73 + 2$ Steve Wilson, 8/25 Lawrence, KS |
1930 (4.2) $2 \times (\antilog 3 - 7 \times 5)$ Steve Wilson, 8/25 Lawrence, KS |
||||
1931 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 72 + 3$ Steve Wilson, 8/25 Lawrence, KS |
1932 (2.8) $\dfrac{5 - .7}{.\overline{2}\%} - 3$ Steve Wilson, 8/25 Lawrence, KS |
1935 (2.8) $\dfrac{\dfrac{3}{.2\%} + 5}{.\overline{7}}$ Steve Wilson, 8/25 Lawrence, KS |
1936 (3.4) $\sqrt[.5]{7 \times 3! + 2}$ Bee Moua, 8/25 Leola, PA |
1938 (2.8) $\dfrac{5 - .7}{.\overline{2}\%} + 3$ Steve Wilson, 8/25 Lawrence, KS |
||||||
1943 (4.2) $2 \times \antilog 3 - 57$ Steve Wilson, 8/25 Lawrence, KS |
1944 (2.8) $\dfrac{7 - .52}{.\overline{3}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1945 (3.4) $(7 \times 5)^2 + (3!)!$ Steve Wilson, 8/25 Lawrence, KS |
1946 (4.4) $\dfrac{\antilog 3 - 27}{.5}$ Steve Wilson, 8/25 Lawrence, KS |
1947 (3.2) $3^7 - 2 \times 5!$ Steve Wilson, 8/25 Lawrence, KS |
1948 (2.8) $\dfrac{7 - .5}{.\overline{3}\%} - 2$ Steve Wilson, 8/25 Lawrence, KS |
1950 (2.6) $\dfrac{2 - 5\%}{(7 + 3)\%\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||
1951 (3.6) $\dfrac{5!}{3!\%} - 7^2$ Steve Wilson, 8/25 Lawrence, KS |
1952 (2.8) $\dfrac{7 - .5}{.\overline{3}\%} + 2$ Steve Wilson, 8/25 Lawrence, KS |
1956 (3.0) $\dfrac{7 - .5 + 2\%}{.\overline{3}\%}$ Steve Wilson, 8/25 Lawrence, KS |
1958 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 7 \times 3 \times 2$ Steve Wilson, 8/25 Lawrence, KS |
1960 (2.6) $\dfrac{7 + 3 - .2}{.5\%}$ Steve Wilson, 8/25 Lawrence, KS |
||||||
1961 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 37 - 2$ Steve Wilson, 8/25 Lawrence, KS |
1963 (3.8) $\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 37$ Steve Wilson, 8/25 Lawrence, KS |
1965 (3.8) $\dfrac{5!}{3!\%} - \dfrac{7}{.2}$ Steve Wilson, 8/25 Lawrence, KS |
1970 (3.4) $\dfrac{37}{2\%} + 5!$ Steve Wilson, 8/25 Lawrence, KS |
|||||||
1972 (4.2) $2 \times \left(\antilog 3 - \dfrac{7}{.5}\right)$ Steve Wilson, 8/25 Lawrence, KS |
1973 (3.6) $\dfrac{5!}{3!\%} - 27$ Steve Wilson, 8/25 Lawrence, KS |
1975 (2.6) $\dfrac{7 - 3 - 5\%}{.2\%}$ Steve Wilson, 8/25 Lawrence, KS |
1976 (4.2) $2 \times (\antilog 3 - 7 - 5)$ Steve Wilson, 8/25 Lawrence, KS |
1977 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 7 \times 3 - 2$ Steve Wilson, 8/25 Lawrence, KS |
1978 (2.6) $\dfrac{7}{.\overline{35}\%} - 2$ Steve Wilson, 8/25 Lawrence, KS |
1979 (3.8) $\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 7 \times 3$ Steve Wilson, 8/25 Lawrence, KS |
1980 (2.6) $\dfrac{7 \times 2 - 3}{.\overline{5}\%}$ Steve Wilson, 8/25 Lawrence, KS |
|||
1981 (4.2) $2 \times (\antilog 3 - 7) - 5$ Steve Wilson, 8/25 Lawrence, KS |
1982 (2.6) $\dfrac{7}{.\overline{35}\%} + 2$ Steve Wilson, 8/25 Lawrence, KS |
1983 (4.2) $2 \times (\antilog 3 - 5) - 7$ Steve Wilson, 8/25 Lawrence, KS |
1984 (4.4) $\dfrac{\antilog 3 - 7}{.5} - 2$ Steve Wilson, 8/25 Lawrence, KS |
1985 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 3 \times (7 - 2)$ Steve Wilson, 8/25 Lawrence, KS |
1986 (2.8) $\dfrac{3 - 2 - .7\%}{5\%\%}$ Steve Wilson, 8/25 Lawrence, KS |
1987 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 7 - 3 \times 2$ Steve Wilson, 8/25 Lawrence, KS |
1988 (4.2) $2 \times \antilog 3 - 7 - 5$ Steve Wilson, 8/25 Lawrence, KS |
1989 (4.4) $\dfrac{\antilog 3 - 2}{.5} - 7$ Steve Wilson, 8/25 Lawrence, KS |
1990 (3.8) $\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 7 - 3$ Steve Wilson, 8/25 Lawrence, KS |
|
1991 (3.6) $\dfrac{5!}{3!\%} - 7 - 2$ Steve Wilson, 8/25 Lawrence, KS |
1992 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 7 - 3 + 2$ Steve Wilson, 8/25 Lawrence, KS |
1993 (2.4) $\dfrac{3 - 2}{5\%\%} - 7$ Steve Wilson, 8/25 Lawrence, KS |
1994 (4.6) $\dfrac{\antilog 3 - \sqrt{7 + 2}}{.5}$ Steve Wilson, 8/25 Lawrence, KS |
1995 (2.4) $\dfrac{2}{(7 + 3)\%\%} - 5$ Steve Wilson, 8/25 Lawrence, KS |
1996 (2.6) $\dfrac{7 + 3 - 2\%}{.5\%}$ Steve Wilson, 8/25 Lawrence, KS |
1997 (4.2) $2 \times (\antilog 3 - 5) + 7$ Steve Wilson, 8/25 Lawrence, KS |
1998 (2.4) $\dfrac{7 + 3}{.5\%} - 2$ Steve Wilson, 8/25 Lawrence, KS |
1999 (4.8) $\cot\arctan(5\%\%)$ $\phantom. - 7 + 3 \times 2$ Steve Wilson, 8/25 Lawrence, KS |
2000 (2.4) $\dfrac{2 - \dfrac35}{7\%\%}$ Steve Wilson, 8/25 Lawrence, KS |
PREVIOUS Page, Page 5 (1601-2000), NEXT Page, ... Index to All Pages.