\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom8}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\antilog}{antilog} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\csch}{csch} \)

Integermania!

First Four Primes

The first four prime numbers are 2, 3, 5, and 7. Create each of the positive integers using one copy of each number, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

PREVIOUS Page, Page 5 (1601-2000), NEXT Page, ... Index to All Pages.

          1605 (2.8)
$\dfrac{5 + \dfrac{.7}{2}}{.\overline{3}\%}$
Steve Wilson, 8/25
Lawrence, KS
  1607 (2.6)
$\dfrac{5 - .2}{.3\%} + 7$
Steve Wilson, 8/25
Lawrence, KS
    1610 (2.8)
$\dfrac{3.5\overline{7}}{.\overline{2}\%}$
Steve Wilson, 11/07
Raytown, MO
      1613 (3.4)
$\dfrac{3}{2\pmf} + 5! - 7$
Steve Wilson, 8/25
Lawrence, KS
1614 (3.4)
$\dfrac{2^3 + 7\%}{5\pmf}$
Steve Wilson, 8/25
Lawrence, KS
    1617 (2.6)
$\dfrac{7 + 2}{.\overline{5}\%} - 3$
Steve Wilson, 8/25
Lawrence, KS
    1620 (2.2)
$\dfrac{3}{5\%} \times 27$
Dave Jones, 7/06
Coventry, England
      1623 (2.6)
$\dfrac{7 + 2}{.\overline{5}\%} + 3$
Steve Wilson, 8/25
Lawrence, KS
  1625 (2.6)
$\dfrac{2 - .7}{(5 + 3)\%\%}$
Steve Wilson, 8/25
Lawrence, KS
1626 (3.8)
$\dfrac{7 + 2}{.\overline{5}\%} + 3!$
Steve Wilson, 8/25
Lawrence, KS
1627 (3.4)
$\dfrac{3}{2\pmf} + 5! + 7$
Steve Wilson, 8/25
Lawrence, KS
1628 (3.2)
$\dfrac{7!}{3} - 52$
Steve Wilson, 8/25
Lawrence, KS
   
          1635 (2.0)
$327 \times 5$
Dave Jones, 7/06
Coventry, England
    1638 (3.2)
$7 \times 2 \times (5! - 3)$
Steve Wilson, 8/25
Lawrence, KS
  1640 (2.6)
$\dfrac{3}{.2\%} + \dfrac{7}{5\%}$
Steve Wilson, 8/25
Lawrence, KS
    1642 (3.4)
$\dfrac{7! - 5!}{3} + 2$
Steve Wilson, 8/25
Lawrence, KS
  1644 (2.8)
$\dfrac{5 - (7 - .2)\%}{.3\%}$
Steve Wilson, 8/25
Lawrence, KS
1645 (2.0)
$235 \times 7$
John Kite, 3/03
Lenexa, KS
1646 (4.0)
$\dfrac{(3!)!}{.\overline{5}} + \dfrac{7}{2\%}$
Steve Wilson, 8/25
Lawrence, KS
1647 (3.6)
$3^7 - \dfrac{5!}{.\overline{2}}$
Steve Wilson, 8/25
Lawrence, KS
1648 (3.2)
$\dfrac{7!}{3} - 2^5$
Steve Wilson, 8/25
Lawrence, KS
  1650 (2.6)
$\dfrac{5 - (7 - 2)\%}{.3\%}$
Steve Wilson, 8/25
Lawrence, KS
      1653 (2.6)
$\dfrac{5 - 2\%}{.3\%} - 7$
Steve Wilson, 8/25
Lawrence, KS
  1655 (2.6)
$\dfrac{5 - \dfrac{7\%}{2}}{.3\%}$
Steve Wilson, 8/25
Lawrence, KS
1656 (4.4)
$\dfrac{7!\pmf}{.\overline{3}\%} + 5!^2\%$
Steve Wilson, 8/25
Lawrence, KS
1657 (3.8)
$\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 7^3$
Steve Wilson, 8/25
Lawrence, KS
  1659 (2.8)
$\dfrac{5 - .2\%}{.3\%} - 7$
Steve Wilson, 8/25
Lawrence, KS
1660 (2.6)
$\dfrac{3.7}{.\overline{2}\%} - 5$
Steve Wilson, 8/25
Lawrence, KS
    1662 (2.8)
$\dfrac{5 - 7 \times .2\%}{.3\%}$
Steve Wilson, 8/25
Lawrence, KS
  1664 (4.2)
$\dfrac{.5 + 7!\pmf}{.\overline{3}\%} + 2$
Steve Wilson, 8/25
Lawrence, KS
1665 (2.8)
$\dfrac{7 - 2 - .5\%}{.3\%}$
Steve Wilson, 8/25
Lawrence, KS
1666 (3.2)
$7 \times (\sqrt[.2]{3} - 5)$
Steve Wilson, 8/25
Lawrence, KS
1667 (2.6)
$\dfrac{5 - 2\%}{.3\%} + 7$
Steve Wilson, 8/25
Lawrence, KS
1668 (4.2)
$\dfrac{7!\pm + .52\phantom8}{.\overline{3}\%}$
Steve Wilson, 8/25
Lawrence, KS
  1670 (2.6)
$\dfrac{3.7}{.\overline{2}\%} + 5$
Steve Wilson, 8/25
Lawrence, KS
  1671 (2.8)
$\dfrac{5 + .7\%}{.3\%} + 2$
Steve Wilson, 8/25
Lawrence, KS
  1673 (2.8)
$\dfrac{5 - .2\%}{.3\%} + 7$
Steve Wilson, 8/25
Lawrence, KS
1674 (2.6)
$\dfrac{7 + 2.3}{.\overline{5}\%}$
Steve Wilson, 8/25
Lawrence, KS
1675 (2.4)
$(7 - .3) \times \dfrac{5}{2\%}$
Steve Wilson, 8/25
Lawrence, KS
1676 (3.4)
$\dfrac{7!}{3} - \dfrac{2}{.5}$
Steve Wilson, 8/25
Lawrence, KS
1677 (3.2)
$\dfrac{7!}{3} - 5 + 2$
Steve Wilson, 8/25
Lawrence, KS
1678 (3.6)
$\dfrac{7!}{3} - \sqrt{\sqrt[.5]{2}}$
Steve Wilson, 8/25
Lawrence, KS
1679 (3.2)
$\dfrac{7! - 5 + 2}{3}$
Steve Wilson, 8/25
Lawrence, KS
1680 (2.8)
$\dfrac{7 \times 2}{(.5 + .\overline{3})\%}$
Steve Wilson, 8/25
Lawrence, KS
  1681 (3.2)
$\dfrac{7! + 5 - 2}{3}$
Steve Wilson, 8/25
Lawrence, KS
1682 (3.6)
$\dfrac{7!}{3} + \sqrt{\sqrt[.5]{2}}$
Steve Wilson, 8/25
Lawrence, KS
1683 (3.2)
$\dfrac{7!}{3} + 5 - 2$
Steve Wilson, 8/25
Lawrence, KS
1684 (3.4)
$\dfrac{7!}{3} + \dfrac{2}{.5}$
Steve Wilson, 8/25
Lawrence, KS
1685 (3.4)
$\dfrac{7!}{3} + \sqrt{5^2}$
Steve Wilson, 8/25
Lawrence, KS
1686 (3.4)
$\dfrac{7!}{3} + (5 - 2)!$
Steve Wilson, 8/25
Lawrence, KS
1687 (3.0)
$(3^5 - 2) \times 7$
Steve Wilson, 2/07
Raytown, MO
1688 (2.6)
$\dfrac{5 + 7\%}{.3\%} - 2$
Steve Wilson, 8/25
Lawrence, KS
  1690 (2.8)
$\dfrac{3.7\overline{5}}{.\overline{2}\%}$
Steve Wilson, 8/25
Lawrence, KS
    1692 (2.6)
$\dfrac{5 + 7\%}{.3\%} + 2$
Steve Wilson, 8/25
Lawrence, KS
  1694 (3.6)
$2 \times ((3!)! + 5! + 7)$
Steve Wilson, 8/25
Lawrence, KS
1695 (2.8)
$\dfrac{3.\overline{7}}{.\overline{2}\%} - 5$
Steve Wilson, 8/25
Lawrence, KS
1696 (3.2)
$7 \times \sqrt[.2]{3} - 5$
Steve Wilson, 8/25
Lawrence, KS
    1699 (3.0)
$3^5 \times 7 - 2$
Steve Wilson, 2/07
Raytown, MO
1700 (2.4)
$\dfrac{7 + \dfrac32}{.5\%}$
Steve Wilson, 8/25
Lawrence, KS
  1701 (3.2)
$3^5 \times \sqrt{7^2}$
Steve Wilson, 8/25
Lawrence, KS
  1703 (3.0)
$3^5 \times 7 + 2$
Steve Wilson, 2/07
Raytown, MO
1704 (2.8)
$\dfrac{5.7 - 2\%}{.\overline{3}\%}$
Steve Wilson, 8/25
Lawrence, KS
1705 (2.8)
$\dfrac{3.\overline{7}}{.\overline{2}\%} + 5$
Steve Wilson, 8/25
Lawrence, KS
1706 (3.2)
$7 \times \sqrt[.2]{3} + 5$
Steve Wilson, 8/25
Lawrence, KS
  1708 (2.6)
$\dfrac{5.7}{.\overline{3}\%} - 2$
Steve Wilson, 8/25
Lawrence, KS
  1710 (2.4)
$\dfrac{52 - .7}{3\%}$
Steve Wilson, 8/25
Lawrence, KS
  1711 (3.6)
$\dfrac{5! - .23}{7\%}$
Steve Wilson, 8/25
Lawrence, KS
1712 (2.6)
$\dfrac{5.7}{.\overline{3}\%} + 2$
Steve Wilson, 8/25
Lawrence, KS
1713 (3.0)
$7^3 \times 5 - 2$
Bridget Osei-Bonsu, 10/04
Lenexa, KS
1714 (3.2)
$(7^3 - .2) \times 5$
Steve Wilson, 2/07
Raytown, MO
1715 (2.4)
$\dfrac{35 - .7}{2\%}$
Steve Wilson, 8/25
Lawrence, KS
1716 (2.0)
$572 \times 3$
Josh Brown, 7/04
Lawrence, KS
1717 (3.0)
$7^3 \times 5 + 2$
Bridget Osei-Bonsu, 10/04
Lenexa, KS
1718 (3.4)
$\dfrac{7! + 5!}{3} - 2$
Steve Wilson, 8/25
Lawrence, KS
  1720 (3.4)
$\dfrac{7!}{3} + \dfrac{2}{5\%}$
Steve Wilson, 8/25
Lawrence, KS
    1722 (3.2)
$7 \times 2 \times (5! + 3)$
Steve Wilson, 8/25
Lawrence, KS
1723 (4.4)
$(\antilog 5)\% + 723$
Steve Wilson, 8/25
Lawrence, KS
  1725 (2.0)
$23 \times 75$
Dave Jones, 7/06
Coventry, England
1726 (3.0)
$(7 + 5)^3 - 2$
Steve Wilson, 8/25
Lawrence, KS
1727 (4.0)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 73$
Steve Wilson, 8/25
Lawrence, KS
1728 (3.2)
$(7 + \sqrt{25})^3$
Kimberly Grosdidier, 12/05
Eudora, KS
1729 (2.2)
$7 \times \left( \dfrac{5}{2\%} - 3 \right)$
Dave Jones, 7/06
Coventry, England
1730 (3.0)
$(7 + 5)^3 + 2$
Steve Wilson, 8/25
Lawrence, KS
  1731 (2.4)
$\dfrac{52 - 7\%}{3\%}$
Steve Wilson, 8/25
Lawrence, KS
1732 (4.4)
$(\antilog 5)\% + 732$
Steve Wilson, 8/25
Lawrence, KS
    1735 (2.2)
$5 \times \left( \dfrac{7}{2\%} - 3 \right)$
Dave Jones, 7/06
Coventry, England
1736 (3.2)
$7 \times (\sqrt[.2]{3} + 5)$
Steve Wilson, 8/25
Lawrence, KS
      1740 (2.6)
$\dfrac{7 + 2 - .3}{.5\%}$
Steve Wilson, 8/25
Lawrence, KS
      1743 (2.2)
$\dfrac{35}{2\%} - 7$
Dave Jones, 7/06
Coventry, England
1744 (3.4)
$\dfrac{7 \times 5}{2\%} - 3!$
Steve Wilson, 8/25
Lawrence, KS
  1746 (3.8)
$\dfrac{3^2 + .7}{.\overline{5}\%}$
Steve Wilson, 8/25
Lawrence, KS
1747 (2.2)
$7 \times \dfrac{5}{2\%} - 3$
Dave Jones, 7/06
Coventry, England
    1750 (2.4)
$\dfrac{7}{(5 - 3) \times .2\%}$
Steve Wilson, 8/25
Lawrence, KS
    1752 (4.2)
$\dfrac{7!\pmf}{.\overline{3}\%} + 2 \times 5!$
Steve Wilson, 8/25
Lawrence, KS
1753 (2.2)
$7 \times \dfrac{5}{2\%} + 3$
Dave Jones, 7/06
Coventry, England
    1756 (3.4)
$\dfrac{7 \times 5}{2\%} + 3!$
Steve Wilson, 8/25
Lawrence, KS
1757 (2.2)
$\dfrac{35}{2\%} + 7$
Dave Jones, 7/06
Coventry, England
1758 (3.6)
$\left(\dfrac{7!}{5!}\right)^2 + 3!$
Steve Wilson, 8/25
Lawrence, KS
  1760 (4.0)
$\dfrac{3^2 + .\overline{7}}{.\overline{5}\%}$
Steve Wilson, 8/25
Lawrence, KS
  1761 (3.4)
$\left(\dfrac{7!}{5!}\right)^2 - 3$
Steve Wilson, 8/25
Lawrence, KS
1762 (3.4)
$7! \times .35 - 2$
Steve Wilson, 8/25
Lawrence, KS
1763 (4.0)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 37$
Steve Wilson, 8/25
Lawrence, KS
1764 (2.8)
$\dfrac{7 + 3 - .2}{.\overline{5}\%}$
Steve Wilson, 8/25
Lawrence, KS
1765 (2.2)
$5 \times \left( \dfrac{7}{2\%} + 3 \right)$
Dave Jones, 7/06
Coventry, England
1766 (3.4)
$7! \times .35 + 2$
Steve Wilson, 8/25
Lawrence, KS
1767 (3.4)
$\left(\dfrac{7!}{5!}\right)^2 + 3$
Steve Wilson, 8/25
Lawrence, KS
1768 (4.6)
$(\antilog 5)\% + 2^7 \times 3!$
Steve Wilson, 8/25
Lawrence, KS
  1770 (2.8)
$\dfrac{5.7 + .2}{.\overline{3}\%}$
Steve Wilson, 8/25
Lawrence, KS
  1771 (2.0)
$253 \times 7$
Dave Jones, 7/06
Coventry, England
  1773 (4.6)
$\dfrac{\antilog 3}{.\overline{5}} - 27$
Steve Wilson, 8/25
Lawrence, KS
1774 (4.4)
$2 \times (\antilog 3 - 5! + 7)$
Steve Wilson, 8/25
Lawrence, KS
  1776 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 7 \times 32$

Steve Wilson, 8/25
Lawrence, KS
1777 (3.0)
$\dfrac{3.\overline{5}}{.2\%} - .\overline{7}$
Steve Wilson, 8/25
Lawrence, KS
  1779 (4.0)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 7 \times 3$
Steve Wilson, 8/25
Lawrence, KS
1780 (3.4)
$5 \times \left( \dfrac{7}{2\%} + 3! \right)$
Steve Wilson, 8/25
Lawrence, KS
        1784 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 72 \times 3$

Steve Wilson, 8/25
Lawrence, KS
1785 (2.2)
$\dfrac{357}{.2}$
Dave Jones, 7/06
Coventry, England
1786 (4.6)
$\dfrac{\antilog 3}{.\overline{5}} - 7 \times 2$
Steve Wilson, 8/25
Lawrence, KS
1787 (4.2)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 7 - 3!$
Steve Wilson, 8/25
Lawrence, KS
1788 (3.6)
$\dfrac{7 + 2 - 3!\%}{5\pmf}$
Steve Wilson, 8/25
Lawrence, KS
  1790 (3.8)
$\dfrac{(3!)!}{.5} + \dfrac{7}{2\%}$
Steve Wilson, 8/25
Lawrence, KS
  1791 (4.6)
$\dfrac{\antilog 3}{.\overline{5}} - 7 - 2$
Steve Wilson, 8/25
Lawrence, KS
1792 (3.0)
$7 \times 2^{5 + 3}$
Steve Wilson, 8/25
Lawrence, KS
1793 (3.2)
$\dfrac{.3 - .2}{.\overline{5}\%\%} - 7$
Steve Wilson, 8/25
Lawrence, KS
1794 (2.6)
$\dfrac{7 + 2 - 3\%}{.5\%}$
Steve Wilson, 8/25
Lawrence, KS
1795 (2.6)
$\dfrac{7 - 3}{.\overline{2}\%} - 5$
Steve Wilson, 8/25
Lawrence, KS
1796 (4.0)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 7 + 3$
Steve Wilson, 8/25
Lawrence, KS
1797 (2.4)
$\dfrac{7 + 2}{.5\%} - 3$
Steve Wilson, 8/25
Lawrence, KS
1798 (2.6)
$\dfrac{7 + 3}{.\overline{5}\%} - 2$
Steve Wilson, 8/25
Lawrence, KS
1799 (4.2)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} - 7 + 3!$
Steve Wilson, 8/25
Lawrence, KS
1800 (2.2)
$\dfrac{3}{2\%} \times (7 + 5)$
Dave Jones, 7/06
Coventry, England
  1801 (4.2)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 - 3!$
Steve Wilson, 8/25
Lawrence, KS
1802 (2.6)
$\dfrac{7 + 3}{.\overline{5}\%} + 2$
Steve Wilson, 8/25
Lawrence, KS
1803 (2.4)
$\dfrac{7 + 2}{.5\%} + 3$
Steve Wilson, 8/25
Lawrence, KS
1804 (4.0)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 - 3$
Steve Wilson, 8/25
Lawrence, KS
1805 (2.6)
$\dfrac{7 - 3}{.\overline{2}\%} + 5$
Steve Wilson, 8/25
Lawrence, KS
1806 (2.6)
$\dfrac{7 + 2 + 3\%}{.5\%}$
Steve Wilson, 8/25
Lawrence, KS
1807 (3.2)
$\dfrac{.3 - .2}{.\overline{5}\%\%} + 7$
Steve Wilson, 8/25
Lawrence, KS
  1809 (4.6)
$\dfrac{\antilog 3}{.\overline{5}} + 7 + 2$
Steve Wilson, 8/25
Lawrence, KS
1810 (4.0)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 + 3$
Steve Wilson, 8/25
Lawrence, KS
    1812 (3.6)
$\dfrac{7 + 2 + 3!\%}{5\pmf}$
Steve Wilson, 8/25
Lawrence, KS
1813 (4.2)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 + 3!$
Steve Wilson, 8/25
Lawrence, KS
1814 (4.6)
$\dfrac{\antilog 3}{.\overline{5}} + 7 \times 2$
Steve Wilson, 8/25
Lawrence, KS
           
  1821 (3.4)
$7 \times \sqrt[.2]{3} + 5!$
Steve Wilson, 8/25
Lawrence, KS
    1824 (2.0)
$57 \times 32$
Joseph Mavungu, 5/03
Olathe, KS
1825 (2.0)
$25 \times 73$
Dave Jones, 8/06
Coventry, England
  1827 (4.6)
$\dfrac{\antilog 3}{.\overline{5}} + 27$
Steve Wilson, 8/25
Lawrence, KS
     
          1835 (4.8)
$\dfrac{\antilog 3}{.\overline{5}} + \dfrac{7}{.2}$
Steve Wilson, 8/25
Lawrence, KS
1836 (2.6)
$\dfrac{7 + 3.2}{.\overline{5}\%}$
Steve Wilson, 8/25
Lawrence, KS
1837 (4.0)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 37$
Steve Wilson, 8/25
Lawrence, KS
  1839 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 7 \times 23$

Steve Wilson, 8/25
Lawrence, KS
1840 (2.8)
$\dfrac{7 + 3.\overline{2}}{.\overline{5}\%}$
Steve Wilson, 8/25
Lawrence, KS
    1842 (4.2)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 7 \times 3!$
Steve Wilson, 8/25
Lawrence, KS
1843 (4.2)
$\sqrt{\dfrac{.5}{.\overline{2}\pmmf}} + 7^3$
Steve Wilson, 8/25
Lawrence, KS
  1845 (2.2)
$\dfrac{37}{2\%} - 5$
Dave Jones, 10/06
Coventry, England
      1849 (3.4)
$\sqrt[.5]{7^2 - 3!}$
Steve Wilson, 8/25
Lawrence, KS
1850 (2.8)
$\dfrac{7}{.\overline{3}\%} - \dfrac{5}{2\%}$
Steve Wilson, 9/08
Raytown, MO
        1854 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 73 \times 2$

Steve Wilson, 8/25
Lawrence, KS
1855 (2.2)
$\dfrac{37}{2\%} + 5$
Dave Jones, 10/06
Coventry, England
1856 (4.4)
$\dfrac{\antilog 3 - 72}{.5}$
Steve Wilson, 8/25
Lawrence, KS
      1860 (2.0)
$372 \times 5$
Dave Jones, 8/06
Coventry, England
            1866 (4.4)
$2 \times (\antilog 3 - 7) - 5!$
Steve Wilson, 8/25
Lawrence, KS
       
    1872 (4.6)
$2 \times \antilog 3 - (.5)^{-7}$
Steve Wilson, 8/25
Lawrence, KS
1873 (4.0)
$\sqrt{(.\overline{5}\pm)^{-2}\phantom8} + 73$
Steve Wilson, 8/25
Lawrence, KS
  1875 (2.2)
$\dfrac{375}{.2}$
Dave Jones, 10/06
Coventry, England
1876 (4.6)
$\ln\sqrt{\exp 3752}$
Steve Wilson, 8/25
Lawrence, KS
      1880 (3.6)
$\dfrac{2}{(7 + 3)\%\%} - 5!$
Steve Wilson, 8/25
Lawrence, KS
            1886 (4.2)
$2 \times (\antilog 3 - 57)$
Steve Wilson, 8/25
Lawrence, KS
1887 (4.4)
$2 \times \antilog 3 - 5! + 7$
Steve Wilson, 8/25
Lawrence, KS
    1890 (2.6)
$\dfrac{7 \times 3}{2 \times .\overline{5}\%}$
Steve Wilson, 8/25
Lawrence, KS
                1898 (2.2)
$\dfrac{57}{3\%} - 2$
Dave Jones, 10/06
Coventry, England
  1900 (2.2)
$\dfrac{5 \times 7 + 3}{2\%}$
Dave Jones, 2/07
Coventry, England
    1902 (2.2)
$\dfrac{57}{3\%} + 2$
Dave Jones, 10/06
Coventry, England
          1908 (2.4)
$\dfrac{53}{2.\overline{7}\%}$
Steve Wilson, 8/25
Lawrence, KS
   
    1912 (4.4)
$\dfrac{7!\pmf}{.\overline{3}\%} + (5\%)^{-2}$
Steve Wilson, 8/25
Lawrence, KS
      1916 (3.8)
$\dfrac{5! - 7!\pmf}{3 \times 2\%}$
Steve Wilson, 8/25
Lawrence, KS
      1920 (2.8)
$\dfrac{5 + 7 \times .2}{.\overline{3}\%}$
Steve Wilson, 8/25
Lawrence, KS
        1924 (2.0)
$52 \times 37$
Cate Henderson, 5/05
Merriam, KS
1925 (3.0)
$\dfrac{3.\overline{7} + .5}{.\overline{2}\%}$
Steve Wilson, 8/25
Lawrence, KS
1926 (2.8)
$\dfrac{5 \times 3 - 2\%}{.\overline{7}\%}$
Steve Wilson, 8/25
Lawrence, KS
1927 (3.8)
$\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 73$
Steve Wilson, 8/25
Lawrence, KS
1928 (3.6)
$\dfrac{5!}{3!\%} - 72$
Steve Wilson, 8/25
Lawrence, KS
1929 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 73 + 2$

Steve Wilson, 8/25
Lawrence, KS
1930 (4.2)
$2 \times (\antilog 3 - 7 \times 5)$
Steve Wilson, 8/25
Lawrence, KS
  1931 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 72 + 3$

Steve Wilson, 8/25
Lawrence, KS
1932 (2.8)
$\dfrac{5 - .7}{.\overline{2}\%} - 3$
Steve Wilson, 8/25
Lawrence, KS
    1935 (2.8)
$\dfrac{\dfrac{3}{.2\%} + 5}{.\overline{7}}$
Steve Wilson, 8/25
Lawrence, KS
1936 (3.4)
$\sqrt[.5]{7 \times 3! + 2}$
Bee Moua, 8/25
Leola, PA
  1938 (2.8)
$\dfrac{5 - .7}{.\overline{2}\%} + 3$
Steve Wilson, 8/25
Lawrence, KS
   
      1943 (4.2)
$2 \times \antilog 3 - 57$
Steve Wilson, 8/25
Lawrence, KS
1944 (2.8)
$\dfrac{7 - .52}{.\overline{3}\%}$
Steve Wilson, 8/25
Lawrence, KS
1945 (3.4)
$(7 \times 5)^2 + (3!)!$
Steve Wilson, 8/25
Lawrence, KS
1946 (4.4)
$\dfrac{\antilog 3 - 27}{.5}$
Steve Wilson, 8/25
Lawrence, KS
1947 (3.2)
$3^7 - 2 \times 5!$
Steve Wilson, 8/25
Lawrence, KS
1948 (2.8)
$\dfrac{7 - .5}{.\overline{3}\%} - 2$
Steve Wilson, 8/25
Lawrence, KS
  1950 (2.6)
$\dfrac{2 - 5\%}{(7 + 3)\%\%}$
Steve Wilson, 8/25
Lawrence, KS
  1951 (3.6)
$\dfrac{5!}{3!\%} - 7^2$
Steve Wilson, 8/25
Lawrence, KS
1952 (2.8)
$\dfrac{7 - .5}{.\overline{3}\%} + 2$
Steve Wilson, 8/25
Lawrence, KS
      1956 (3.0)
$\dfrac{7 - .5 + 2\%}{.\overline{3}\%}$
Steve Wilson, 8/25
Lawrence, KS
  1958 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 7 \times 3 \times 2$

Steve Wilson, 8/25
Lawrence, KS
  1960 (2.6)
$\dfrac{7 + 3 - .2}{.5\%}$
Steve Wilson, 8/25
Lawrence, KS
  1961 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 37 - 2$

Steve Wilson, 8/25
Lawrence, KS
  1963 (3.8)
$\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 37$
Steve Wilson, 8/25
Lawrence, KS
  1965 (3.8)
$\dfrac{5!}{3!\%} - \dfrac{7}{.2}$
Steve Wilson, 8/25
Lawrence, KS
        1970 (3.4)
$\dfrac{37}{2\%} + 5!$
Steve Wilson, 8/25
Lawrence, KS
    1972 (4.2)
$2 \times \left(\antilog 3 - \dfrac{7}{.5}\right)$
Steve Wilson, 8/25
Lawrence, KS
1973 (3.6)
$\dfrac{5!}{3!\%} - 27$
Steve Wilson, 8/25
Lawrence, KS
  1975 (2.6)
$\dfrac{7 - 3 - 5\%}{.2\%}$
Steve Wilson, 8/25
Lawrence, KS
1976 (4.2)
$2 \times (\antilog 3 - 7 - 5)$
Steve Wilson, 8/25
Lawrence, KS
1977 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 7 \times 3 - 2$

Steve Wilson, 8/25
Lawrence, KS
1978 (2.6)
$\dfrac{7}{.\overline{35}\%} - 2$
Steve Wilson, 8/25
Lawrence, KS
1979 (3.8)
$\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 7 \times 3$
Steve Wilson, 8/25
Lawrence, KS
1980 (2.6)
$\dfrac{7 \times 2 - 3}{.\overline{5}\%}$
Steve Wilson, 8/25
Lawrence, KS
  1981 (4.2)
$2 \times (\antilog 3 - 7) - 5$
Steve Wilson, 8/25
Lawrence, KS
1982 (2.6)
$\dfrac{7}{.\overline{35}\%} + 2$
Steve Wilson, 8/25
Lawrence, KS
1983 (4.2)
$2 \times (\antilog 3 - 5) - 7$
Steve Wilson, 8/25
Lawrence, KS
1984 (4.4)
$\dfrac{\antilog 3 - 7}{.5} - 2$
Steve Wilson, 8/25
Lawrence, KS
1985 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 3 \times (7 - 2)$

Steve Wilson, 8/25
Lawrence, KS
1986 (2.8)
$\dfrac{3 - 2 - .7\%}{5\%\%}$
Steve Wilson, 8/25
Lawrence, KS
1987 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 7 - 3 \times 2$

Steve Wilson, 8/25
Lawrence, KS
1988 (4.2)
$2 \times \antilog 3 - 7 - 5$
Steve Wilson, 8/25
Lawrence, KS
1989 (4.4)
$\dfrac{\antilog 3 - 2}{.5} - 7$
Steve Wilson, 8/25
Lawrence, KS
1990 (3.8)
$\dfrac{\sqrt{2}}{(\sqrt{.5})\pmf} - 7 - 3$
Steve Wilson, 8/25
Lawrence, KS
  1991 (3.6)
$\dfrac{5!}{3!\%} - 7 - 2$
Steve Wilson, 8/25
Lawrence, KS
1992 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 7 - 3 + 2$

Steve Wilson, 8/25
Lawrence, KS
1993 (2.4)
$\dfrac{3 - 2}{5\%\%} - 7$
Steve Wilson, 8/25
Lawrence, KS
1994 (4.6)
$\dfrac{\antilog 3 - \sqrt{7 + 2}}{.5}$
Steve Wilson, 8/25
Lawrence, KS
1995 (2.4)
$\dfrac{2}{(7 + 3)\%\%} - 5$
Steve Wilson, 8/25
Lawrence, KS
1996 (2.6)
$\dfrac{7 + 3 - 2\%}{.5\%}$
Steve Wilson, 8/25
Lawrence, KS
1997 (4.2)
$2 \times (\antilog 3 - 5) + 7$
Steve Wilson, 8/25
Lawrence, KS
1998 (2.4)
$\dfrac{7 + 3}{.5\%} - 2$
Steve Wilson, 8/25
Lawrence, KS
1999 (4.8)
$\cot\arctan(5\%\%)$
$\phantom. - 7 + 3 \times 2$

Steve Wilson, 8/25
Lawrence, KS
2000 (2.4)
$\dfrac{2 - \dfrac35}{7\%\%}$
Steve Wilson, 8/25
Lawrence, KS

PREVIOUS Page, Page 5 (1601-2000), NEXT Page, ... Index to All Pages.