$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

## Integermania!

#### Quattro Ones

This problem was proposed by Integermaniac master Paolo Pellegrini. Create each of the positive integers using four copies of 1, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here!  Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400), Page 2 (401+).

 1 (1.0) $1 + 1 - 1 \times 1$ Paolo Pellegrini, 3/09Martina Franca, Italy 2 (1.0) $1 + 1 + 1 - 1$ Paolo Pellegrini, 3/09Martina Franca, Italy 3 (1.0) $1 + 1 + 1 \times 1$ Paolo Pellegrini, 3/09Martina Franca, Italy 4 (1.0) $1 + 1 + 1 + 1$ Paolo Pellegrini, 3/09Martina Franca, Italy 5 (2.2) $\dfrac{1}{(1+1)\times .1}$ Ralph Jeffords, 5/09Centreville, VA 6 (2.4) $\dfrac{1}{.1+.1}+1$ Steve Wilson, 4/09Raytown, MO 7 (2.4) $\dfrac{1}{.\overline{1}} - 1 - 1$ Ralph Jeffords, 3/09Centreville, VA 8 (2.2) $\dfrac{1}{.1} - 1 - 1$ Ralph Jeffords, 4/09Centreville, VA 9 (2.0) $11 - 1 - 1$ Steve Wilson, 3/09Raytown, MO 10 (2.0) $11 - 1 \times 1$ Steve Wilson, 3/09Raytown, MO 11 (2.0) $11 - 1 + 1$ Steve Wilson, 3/09Raytown, MO 12 (2.0) $11 + 1 \times 1$ Steve Wilson, 3/09Raytown, MO 13 (2.0) $11 + 1 + 1$ Steve Wilson, 3/09Raytown, MO 14 (3.6) $11 + \dfrac{1}{\sqrt{.\overline{1}}}$ Ralph Jeffords, 4/09Centreville, VA 15 (3.8) $\dfrac{1}{(1+1) \times \sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 4/09Martina Franca, Italy 16 (4.0) $\dfrac{1}{.1-\sqrt{.\overline{1}\%}} + 1$ Paolo Pellegrini, 4/09Martina Franca, Italy 17 (2.4) $\dfrac{1+1}{.\overline{1}} -1$ Ralph Jeffords, 3/09Centreville, VA 18 (2.4) $\dfrac{1\times 1+1}{.\overline{1}}$ Ralph Jeffords, 3/09Centreville, VA 19 (2.2) $\dfrac{1+1}{.1}-1$ Steve Wilson, 4/09Raytown, MO 20 (2.2) $\dfrac{1+1}{.1} \times 1$ Steve Wilson, 4/09Raytown, MO 21 (2.2) $\dfrac{1+1}{.1} + 1$ Steve Wilson, 4/09Raytown, MO 22 (2.0) $11 + 11$ Steve Wilson, 4/09Raytown, MO 23 (3.8) $\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! - 1$ Paolo Pellegrini, 4/09Martina Franca, Italy 24 (3.2) $(1 + 1 + 1 + 1)!$ Carolyn Neptune, 3/09Prairie Village, KS 25 (3.4) $\dfrac{.\overline{1} + .\overline{1}}{(1- .\overline{1})\%}$ Paolo Pellegrini, 4/09Martina Franca, Italy 26 (4.0) $\dfrac{1}{.\overline{1} \times \sqrt{.\overline{1}}} - 1$ Paolo Pellegrini, 4/09Martina Franca, Italy 27 (2.4) $\dfrac{1+1+1}{.\overline{1}}$ Carolyn Neptune, 3/09Prairie Village, KS 28 (3.8) $\dfrac{1}{\sqrt{.\overline{1}\%}} - 1 - 1$ Ralph Jeffords, 6/09Centreville, VA 29 (3.6) $\sqrt{ \dfrac{1-.1}{1 \pmf}} - 1$ Paolo Pellegrini, 12/09Martina Franca, Italy 30 (2.2) $\dfrac{1+1+1}{.1}$ Dave Jones, 4/09Coventry, England 31 (3.4) $\sqrt{ \sqrt[.1]{1+1}} - 1$ Paolo Pellegrini, 12/09Martina Franca, Italy 32 (3.4) $\sqrt[.1+.1]{1+1}$ Ralph Jeffords, 4/09Centreville, VA 33 (3.4) $\sqrt{ \sqrt[.1]{1+1}} + 1$ Paolo Pellegrini, 12/09Martina Franca, Italy 34 (3.6) $\dfrac{11}{\sqrt{.\overline{1}}} + 1$ Paolo Pellegrini, 5/09Martina Franca, Italy 35 (4.6) $\dfrac{ \sqrt{.\overline{1}} - .1}{\left( 1-\sqrt{.\overline{1}}\right) \%}$ Ralph Jeffords, 6/09Centreville, VA 36 (3.6) $\dfrac{11+1}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 5/09Martina Franca, Italy 37 (3.6) $111 \times \sqrt{.\overline{1}}$ Paolo Pellegrini, 5/09Martina Franca, Italy 38 (4.4) $\sqrt[-\sqrt{.\overline{1}}]{ \sqrt{.\overline{1}}} + 11$ Ralph Jeffords, 8/09Centreville, VA 39 (4.2) $\dfrac{1}{\sqrt{.\overline{1}\%}} + \dfrac{1}{.\overline{1}}$ Ralph Jeffords, 6/09Centreville, VA 40 (3.8) $\dfrac{ \dfrac{1}{\sqrt{.\overline{1}}} +1}{.1}$ Paolo Pellegrini, 5/09Martina Franca, Italy 41 (3.8) $\dfrac{1}{\sqrt{.\overline{1}\%}} + 11$ Paolo Pellegrini, 5/09Martina Franca, Italy 42 (4.6) $(1 + 1) \times \coth \ln \sqrt{1.1}$ Steve Wilson, 9/09Raytown, MO 43 (4.8) $-\log(1\%\%) \times 11 - 1$ Ralph Jeffords, 10/09Centreville, VA 44 (3.2) $\dfrac{.1}{(.\overline{1} + .\overline{1})\%} - 1$ Ralph Jeffords, 8/09Centreville, VA 45 (2.4) $\dfrac{1-.1}{(1+1)\%}$ Dave Jones, 4/09Coventry, England 46 (3.2) $\dfrac{.1}{(.\overline{1} + .\overline{1})\%} + 1$ Ralph Jeffords, 8/09Centreville, VA 47 (4.6) $\dfrac{1}{(1+1)\%} + \log(1 \pm)$ Ralph Jeffords, 10/09Centreville, VA 48 (4.6) $\dfrac{1}{(1+1)\%} + \log(1\%)$ Steve Wilson, 9/09Raytown, MO 49 (2.2) $\dfrac{1}{(1+1)\%} - 1$ Dave Jones, 4/09Coventry, England 50 (2.2) $\dfrac{1}{(1+1)\%} \times 1$ Dave Jones, 4/09Coventry, England 51 (2.2) $\dfrac{1}{(1+1)\%} + 1$ Dave Jones, 4/09Coventry, England 52 (4.6) $\dfrac{1}{(1+1)\%} - \log(1\%)$ Steve Wilson, 9/09Raytown, MO 53 (4.6) $\dfrac{1}{(1+1)\%} - \log(1 \pm)$ Ralph Jeffords, 10/09Centreville, VA 54 (3.6) $\dfrac{(1+1+1)!}{.\overline{1}}$ Carolyn Neptune, 3/09Prairie Village, KS 55 (2.2) $\dfrac{1.1}{(1+1)\%}$ Steve Wilson, 5/09Raytown, MO 56 (4.6) $1 - \dfrac{1.1}{(\log(1\%))\%}$ Steve Wilson, 10/09Raytown, MO 57 (4.0) $\dfrac{1+1-.1}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 6/09Martina Franca, Italy 58 (4.8) $\sqrt{1 + \cosh \left( \dfrac{\operatorname{arccsch}(1 \times 1)}{.1} \right) }$ Paolo Pellegrini, 1/18Martina Franca, Italy 59 (3.8) $\dfrac{1+1}{\sqrt{.\overline{1}\%}} - 1$ Paolo Pellegrini, 6/09Martina Franca, Italy 60 (3.4) $\dfrac{(1+1+1)!}{.1}$ Paolo Pellegrini, 6/09Martina Franca, Italy 61 (3.8) $\dfrac{1+1}{\sqrt{.\overline{1}\%}} + 1$ Paolo Pellegrini, 6/09Martina Franca, Italy 62 (4.4) $\dfrac{ \left(\left( \dfrac{1}{\sqrt{.\overline{1}}}\right)! \right)!\% -1}{.1}$ Ralph Jeffords, 11/09Centreville, VA 63 (3.8) $\dfrac{1.1+1}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 6/09Martina Franca, Italy 64 (3.8) $(1+1)^{\left( 1/ \sqrt{.\overline{1}} \right)!}$ Steve Wilson, 9/09Raytown, MO 65 (4.6) $\dfrac{.1+\sqrt{.\overline{1}}}{\left( 1-\sqrt{.\overline{1}}\right)\%}$ Paolo Pellegrini, 10/09Martina Franca, Italy 66 (3.8) $\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \times 11$ Paolo Pellegrini, 7/09Martina Franca, Italy 67 (4.4) $\dfrac{1-\sqrt{.\overline{1}}}{1\%} + \sqrt{.\overline{1}}$ Paolo Pellegrini, 10/09Martina Franca, Italy 68 (4.8) $\dfrac{1}{1\%} - \sqrt[.1]{\sec \arctan 1}$ Paolo Pellegrini, 1/18Martina Franca, Italy 69 (4.4) $\dfrac{ \left(1.1 - \sqrt{.\overline{1}} \right)\%}{.\overline{1} \pmf}$ Paolo Pellegrini, 10/09Martina Franca, Italy 70 (3.8) $\dfrac{1 - \sqrt{.1 - 1\%}}{1\%}$ Paolo Pellegrini, 7/09Martina Franca, Italy 71 (4.2) $\sqrt{1+ \left(1+ \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!}$ Paolo Pellegrini, 10/09Martina Franca, Italy 72 (2.8) $\dfrac{ \dfrac{1}{.\overline{1}} -1}{.\overline{1}}$ Steve Wilson, 5/09Raytown, MO 73 (4.2) $\left( \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)! \times .1 + 1$ Ralph Jeffords, 11/09Centreville, VA 74 (3.8) $\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} - 1$ Paolo Pellegrini, 7/09Martina Franca, Italy 75 (3.8) $\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} \times 1$ Paolo Pellegrini, 7/09Martina Franca, Italy 76 (3.8) $\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} + 1$ Ralph Jeffords, 7/09Centreville, VA 77 (4.6) $11 \times (1 - \log(1 \pmm))$ Paolo Pellegrini, 4/10Martina Franca, Italy 78 (4.4) $\dfrac{ \dfrac{1}{.\overline{1}} - \sqrt{.\overline{1}}}{.\overline{1}}$ Paolo Pellegrini, 11/09Martina Franca, Italy 79 (2.8) $\dfrac{.1}{.\overline{1}\%} - 11$ Steve Wilson, 5/09Raytown, MO 80 (2.6) $\dfrac{1-.1-.1}{1\%}$ Ralph Jeffords, 11/09Centreville, VA 81 (2.6) $\dfrac{ \dfrac{1}{.1} -1}{.\overline{1}}$ Steve Wilson, 1/10Raytown, MO 82 (2.8) $\dfrac{1}{.\overline{1} \times .\overline{1}} + 1$ Ralph Jeffords, 9/09Centreville, VA 83 (4.8) $(.\overline{1})^ {\log(1\%)} + 1 + 1$ Steve Wilson, 10/09Raytown, MO 84 (4.6) $\dfrac{.1}{.\overline{1}\%} - \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$ Kevin Schwarz, 8/09Olathe, Kansas 85 (4.8) $\dfrac{\sinh (\ln (1+1)) + .1}{1\%}$ Paolo Pellegrini, 1/18Martina Franca, Italy 86 (4.6) $\dfrac{ \left(1- \sqrt{.\overline{1}\%} \right)\%}{.\overline{1} \pm} - 1$ Paolo Pellegrini, 1/10Martina Franca, Italy 87 (4.4) $\dfrac{.1}{.\overline{1}\%} - \dfrac{1}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 7/09Olathe, Kansas 88 (2.8) $\dfrac{.1}{.\overline{1}\%} - 1 - 1$ Steve Wilson, 5/09Raytown, MO 89 (2.2) $\dfrac{1}{1\%} - 11$ Kevin Schwarz, 7/09Olathe, Kansas 90 (2.4) $\dfrac{1}{1\%} - \dfrac{1}{.1}$ Ralph Jeffords, 9/09Centreville, VA 91 (2.4) $\dfrac{1-.1}{1\%} + 1$ Steve Wilson, 1/10Raytown, MO 92 (2.8) $\dfrac{.1}{.\overline{1}\%} + 1 + 1$ Steve Wilson, 5/09Raytown, MO 93 (4.4) $\dfrac{.1}{.\overline{1}\%} + \dfrac{1}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 7/09Olathe, Kansas 94 (4.0) $\dfrac{1}{1\%} - \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$ Ralph Jeffords, 7/09Centreville, VA 95 (3.6) $\dfrac{.1 + .\overline{1}}{(.\overline{1} +.\overline{1})\%}$ Paolo Pellegrini, 12/09Martina Franca, Italy 96 (3.8) $\sqrt{ \dfrac{ \sqrt[.1]{1+1}}{.\overline{1}}}$ Paolo Pellegrini, 12/09Martina Franca, Italy 97 (3.8) $\dfrac{1}{1\%} - \dfrac{1}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 7/09Olathe, Kansas 98 (2.2) $\dfrac{1}{1\%} - 1 - 1$ Kevin Schwarz, 6/09Olathe, Kansas 99 (2.2) $\dfrac{1}{1\%} - 1 \times 1$ Kevin Schwarz, 6/09Olathe, Kansas 100 (2.2) $\dfrac{1}{1\%} \times 1 \times 1$ Kevin Schwarz, 6/09Olathe, Kansas 101 (2.2) $\dfrac{1}{1\%} + 1 \times 1$ Kevin Schwarz, 6/09Olathe, Kansas 102 (2.2) $\dfrac{1}{1\%} + 1 + 1$ Kevin Schwarz, 6/09Olathe, Kansas 103 (3.8) $\dfrac{1}{1\%} + \dfrac{1}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 7/09Olathe, Kansas 104 (4.6) $\dfrac{1}{1\%} - \log(1 \pm) + 1$ Steve Wilson, 10/09Raytown, MO 105 (4.8) $\dfrac{1}{1\%} - \log(1\%\%) + 1$ Steve Wilson, 10/09Raytown, MO 106 (4.0) $\dfrac{1}{1\%} + \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$ Kevin Schwarz, 8/09Olathe, Kansas 107 (4.6) $111 + \log(1\%\%)$ Ralph Jeffords, 12/09Centreville, VA 108 (2.4) $\dfrac{11+1}{.\overline{1}}$ Ralph Jeffords, 7/09Centreville, VA 109 (2.2) $\dfrac{11}{.1} - 1$ Ralph Jeffords, 7/09Centreville, VA 110 (2.0) $111 - 1$ Kevin Schwarz, 4/09Olathe, Kansas 111 (2.0) $111 \times 1$ Brooke Atkinson, 4/09Olathe, KS 112 (2.0) $111 + 1$ Kevin Schwarz, 4/09Olathe, Kansas 113 (4.4) $111 - \log(1\%)$ Steve Wilson, 11/09Raytown, MO 114 (4.4) $111 - \log(1 \pm)$ Paolo Pellegrini, 2/10Martina Franca, Italy 115 (4.6) $111 - \log(1\%\%)$ Paolo Pellegrini, 2/10Martina Franca, Italy 116 (4.6) $111 - \log(1 \% \pm)$ Paolo Pellegrini, 2/10Martina Franca, Italy 117 (4.4) $\dfrac{ \left(1+ \sqrt{.1-1\%} \right)\%}{.\overline{1} \pmf}$ Paolo Pellegrini, 11/09Martina Franca, Italy 118 (3.2) $\dfrac{.\overline{1} +(1+1)\%}{.\overline{1}\%}$ Paolo Pellegrini, 8/09Martina Franca, Italy 119 (3.6) $\left( \dfrac{1}{.1+.1} \right)! - 1$ Steve Wilson, 8/09Raytown, MO 120 (2.2) $\dfrac{11+1}{.1}$ Ralph Jeffords, 7/09Centreville, VA 121 (2.0) $11 \times 11$ Brooke Atkinson, 6/09Olathe, KS 122 (4.4) $(\coth \operatorname{arccsch} 11)^{1+1}$ Paolo Pellegrini, 8/10Martina Franca, Italy 123 (4.8) $(\sin \operatorname{arccot} 11)^{\log(1\%)} + 1$ Paolo Pellegrini, 1/18Martina Franca, Italy 124 (4.2) $\left( \sqrt[-\sqrt{.\overline{1}}]{(1+1)\%} \right) \pm -1$ Paolo Pellegrini, 11/09Martina Franca, Italy 125 (2.6) $\dfrac{1}{(1-.1-.1)\%}$ Paolo Pellegrini, 7/09Martina Franca, Italy 126 (4.2) $\left( \sqrt[-\sqrt{.\overline{1}}]{(1+1)\%} \right) \pm +1$ Paolo Pellegrini, 11/09Martina Franca, Italy 127 (4.6) $\dfrac{1}{1\%} + \sqrt[-\sqrt{.\overline{1}}]{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 11/09Martina Franca, Italy 128 (5.2) $-(\log(1\%))^{(1-\log(1\%))!+1}$ Steve Wilson, 3/10Raytown, MO 129 (4.4) $\dfrac{\left( 1.1+\sqrt{.\overline{1}} \right)\%}{.\overline{1} \pmf}$ Paolo Pellegrini, 1/10Martina Franca, Italy 130 (3.8) $\dfrac{1+ \sqrt{.1-1\%}}{1\%}$ Ralph Jeffords, 10/09Centreville, VA 131 (4.6) $\dfrac{ \sqrt{.\overline{1}} +.1}{\sqrt{.\overline{1}} \%} + 1$ Ralph Jeffords, 5/10Centreville, VA 132 (4.8) $\dfrac{1 - 1\%}{(\sinh \ln (1+1))\%}$ Paolo Pellegrini, 1/18Martina Franca, Italy 133 (4.4) $\dfrac{1+\sqrt{.\overline{1}}}{1\%} - \sqrt{.\overline{1}}$ Paolo Pellegrini, 1/10Martina Franca, Italy 134 (5.2) $\dfrac{11}{.1} + (-\log(1\%\%))!$ Ralph Jeffords, 5/10Centreville, VA 135 (4.0) $\dfrac{1-.1}{\left(1- \sqrt{.\overline{1}} \right)\%}$ Paolo Pellegrini, 1/10Martina Franca, Italy 136 (5.8) $\dfrac{ -\log(1\% \pmf)}{.\overline{1} \times \sqrt{.\overline{1}}} + 1$ Ralph Jeffords, 5/10Centreville, VA 137 (6.2) $\dfrac{ -\log(1\% \pmf)}{.\overline{1} \times \sqrt{.\overline{1}}} - \log(1\%)$ Steve Wilson, 9/10Raytown, MO 138 (5.8) $((-\log(1\%\%))! - 1) \times \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$ Ralph Jeffords, 5/10Centreville, VA 139 (4.8) $\dfrac{1}{ \left( \sqrt{ \dfrac{1}{.\overline{1}} !}\right)!\% \pm} + .\overline{1}$ Paolo Pellegrini, 4/10Martina Franca, Italy 140 (4.6) $\dfrac{11 - \log(1 \pm)}{.1}$ Paolo Pellegrini, 2/10Martina Franca, Italy 143 (4.4) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{1\%}$ Paolo Pellegrini, 1/10Martina Franca, Italy 144 (4.4) $(.1 + .1) \times \left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!$ Paolo Pellegrini, 2/10Martina Franca, Italy 145 (4.6) $\dfrac{1 - \sqrt{.\overline{1}\%}}{\left( 1- \sqrt{.\overline{1}} \right)\%}$ Paolo Pellegrini, 3/10Martina Franca, Italy 147 (4.8) $\log \left( \sqrt[(1+1)\%]{\dfrac{1}{1 \pmf}} \pm \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 148 (4.8) $\log \left( \sqrt[(1+1)\%]{\dfrac{1}{1 \pmf}} \% \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 149 (3.8) $\dfrac{1}{ \left( 1- \sqrt{.\overline{1}} \right) \%} - 1$ Ralph Jeffords, 4/10Centreville, VA 150 (3.8) $\dfrac{1}{ \left( 1- \sqrt{.\overline{1}} \right) \%} \times 1$ Ralph Jeffords, 4/10Centreville, VA 151 (3.8) $\dfrac{1}{\left( 1- \sqrt{.\overline{1}} \right) \%} + 1$ Ralph Jeffords, 4/10Centreville, VA 152 (4.6) $(.1 + .\overline{1}) \times \left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!$ Paolo Pellegrini, 3/10Martina Franca, Italy 153 (4.8) $\log \left( \dfrac{1}{ \sqrt[(1+1)\%]{1 \pmf} \pmf} \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 154 (4.8) $1 - \log \left( \sqrt[(1+1)\%]{1 \pmf} \pm \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 155 (4.6) $\dfrac{1+\sqrt{.\overline{1}\%}}{ \left(1- \sqrt{.\overline{1}} \right)\%}$ Paolo Pellegrini, 4/10Martina Franca, Italy 160 (4.4) $\dfrac{.1 + \sqrt{\dfrac{1}{.\overline{1}}} !\%}{1 \pmf}$ Paolo Pellegrini, 4/10Martina Franca, Italy 161 (4.8) $\coth \ln \coth ((1+1) \times \operatorname{arcsinh}(1+1))$ Paolo Pellegrini, 1/18Martina Franca, Italy 162 (2.8) $\dfrac{1+1}{.\overline{1} \times .\overline{1}}$ Paolo Pellegrini, 9/09Martina Franca, Italy 163 (4.8) $\cosh ((1+1) \times \operatorname{arccsch} .1\overline{1})$ Paolo Pellegrini, 1/18Martina Franca, Italy 164 (4.8) $1 + \cosh ((1+1) \times \operatorname{arccsch} .\overline{1})$ Paolo Pellegrini, 1/18Martina Franca, Italy 165 (4.0) $\dfrac{11\%}{\left(1- \sqrt{.\overline{1}} \right) \pmf}$ Paolo Pellegrini, 9/09Martina Franca, Italy 167 (4.4) $\dfrac{\sqrt{.\overline{1}}}{(1+1) \pmf} + \sqrt{.\overline{1}}$ Paolo Pellegrini, 4/10Martina Franca, Italy 168 (4.8) $\left(\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)! +1\right)! \times \sqrt{.\overline{1}\%}$ Paolo Pellegrini, 5/10Martina Franca, Italy 169 (4.8) $\left( \log \left( \sqrt[.1]{.1} \right) \pm \right)^{\ \ 1+1}$ Paolo Pellegrini, 1/18Martina Franca, Italy 170 (3.2) $\dfrac{(1+1-.\overline{1})\%}{.\overline{1} \pmf}$ Paolo Pellegrini, 5/10Martina Franca, Italy 171 (3.2) $\dfrac{.1+.1-1\%}{.\overline{1}\%}$ Paolo Pellegrini, 9/09Martina Franca, Italy 172 (4.4) $\dfrac{1+ \left(\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)! \right)!\%}{1\%}$ Paolo Pellegrini, 5/10Martina Franca, Italy 175 (4.6) $\dfrac{ \sqrt{.\overline{1}} -.1}{\left(1+ \sqrt{.\overline{1}} \right) \pmf}$ Paolo Pellegrini, 5/10Martina Franca, Italy 177 (4.6) $\dfrac{(1+1)\% - \sqrt{.\overline{1}} \pmf}{.\overline{1} \pmf}$ Paolo Pellegrini, 5/10Martina Franca, Italy 179 (3.0) $\dfrac{.1+.1}{.\overline{1}\%} - 1$ Paolo Pellegrini, 9/09Martina Franca, Italy 180 (2.4) $\dfrac{1+1}{1.\overline{1}\%}$ Paolo Pellegrini, 9/09Martina Franca, Italy 181 (3.0) $\dfrac{.1+.1}{.\overline{1}\%} + 1$ Steve Wilson, 1/10Raytown, MO 183 (4.6) $\dfrac{(1+1)\% + \sqrt{.\overline{1}} \pmf}{.\overline{1} \pmf}$ Paolo Pellegrini, 6/10Martina Franca, Italy 185 (5.0) $111 \times \cosh \ln \sqrt{.\overline{1}}$ Paolo Pellegrini, 8/11Martina Franca, Italy 189 (3.0) $\dfrac{.11+.1}{.\overline{1}\%}$ Steve Wilson, 1/10Raytown, MO 190 (2.4) $\dfrac{1+1-.1}{1\%}$ Steve Wilson, 8/09Raytown, MO 191 (3.2) $\dfrac{.\overline{1}+.1}{.\overline{1}\%} + 1$ Paolo Pellegrini, 6/10Martina Franca, Italy 194 (4.8) $\dfrac{1+1}{1\%} + \log(1 \pmm)$ Paolo Pellegrini, 1/18Martina Franca, Italy 195 (4.8) $\dfrac{.1+\sqrt{.\overline{1}}}{(.\overline{1} +.\overline{1})\%}$ Paolo Pellegrini, 6/10Martina Franca, Italy 196 (4.8) $\dfrac{1+1}{1\%} + \log(1 \% \%)$ Paolo Pellegrini, 1/18Martina Franca, Italy 197 (4.6) $\dfrac{1-1\%-\sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 6/10Martina Franca, Italy 198 (4.6) $\dfrac{1+1}{1\%} + \log(1\%)$ Paolo Pellegrini, 6/10Martina Franca, Italy 199 (2.2) $\dfrac{1+1}{1\%} - 1$ Steve Wilson, 8/09Raytown, MO 200 (2.2) $\dfrac{1}{1\%} \times (1 + 1)$ Steve Wilson, 8/09Raytown, MO 201 (2.2) $\dfrac{1+1}{1\%} + 1$ Steve Wilson, 8/09Raytown, MO 202 (4.6) $\cosh((1+1) \operatorname{arccsch} (.1)) + 1$ Paolo Pellegrini, 7/10Martina Franca, Italy 203 (4.6) $\dfrac{1-\sqrt{.\overline{1}} +1\%}{\sqrt{.\overline{1}} \%}$ Paolo Pellegrini, 7/10Martina Franca, Italy 204 (4.8) $1 - \log \left( \sqrt[1\%]{1 \times 1\%} \pm \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 205 (4.8) $1 + 1 - \log \left( \sqrt[1\%]{1\%} \pm \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 206 (4.8) $\dfrac{1+1}{1\%} - \log(1 \pmm)$ Paolo Pellegrini, 1/18Martina Franca, Italy 209 (3.6) $\dfrac{.\overline{1} +.\overline{1} +1\%}{.\overline{1}\%}$ Paolo Pellegrini, 7/10Martina Franca, Italy 210 (2.2) $\dfrac{1.1+1}{1\%}$ Steve Wilson, 1/10Raytown, MO 211 (3.4) $\dfrac{.1+.\overline{1}}{.1\%} - .\overline{1}$ Paolo Pellegrini, 7/10Martina Franca, Italy 212 (4.8) $11 + \coth \ln \sqrt{1 + 1\%}$ Paolo Pellegrini, 1/18Martina Franca, Italy 213 (4.8) $11 - \log \left( \sqrt[1\%]{1\%} \% \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 214 (4.8) $11 - \log \left( \sqrt[1\%]{1\%} \pm \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 215 (4.4) $\sqrt[\sqrt{.\overline{1}}] {\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)!} - 1$ Paolo Pellegrini, 7/10Martina Franca, Italy 216 (3.8) $\sqrt[ \sqrt{.\overline{1}}] {(1+1+1)!}$ Paolo Pellegrini, 9/10Martina Franca, Italy 217 (4.4) $\sqrt[\sqrt{.\overline{1}}] {\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)!} + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 218 (5.0) $\log \left( 1 \% ^{-111} \% \% \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 219 (4.6) $\dfrac{ \sqrt{.\overline{1}} -.1 +1\%}{.\overline{1}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 220 (4.8) $(\cosh \ln 11 -1) \pm ^{-1}$ Paolo Pellegrini, 9/10Martina Franca, Italy 221 (4.4) $\dfrac{1}{1 - \operatorname{sech} \ln 1.1}$ Paolo Pellegrini, 1/18Martina Franca, Italy 222 (4.6) $\log \left(1\%^{-111}\right)$ Paolo Pellegrini, 9/10Martina Franca, Italy 223 (5.0) $1 \times \coth \ln \cosh \operatorname{arccsch} \sqrt{111}$ Paolo Pellegrini, 9/14Martina Franca, Italy 224 (4.4) $\left( \sqrt{.\overline{1}} + .\overline{1}\right)\%^{-1} - 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 225 (2.6) $\dfrac{1+1}{(1-.\overline{1})\%}$ Paolo Pellegrini, 8/09Martina Franca, Italy 226 (4.4) $\left( \sqrt{.\overline{1}} + .\overline{1}\right)\%^{-1} + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 230 (4.4) $\dfrac{1.1 -\sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 231 (4.2) $\dfrac{1+1 \pm}{\left( \sqrt{.\overline{1}} +.1\right)\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 232 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 11$ Paolo Pellegrini, 9/10Martina Franca, Italy 233 (4.4) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{.1}$ Paolo Pellegrini, 9/10Martina Franca, Italy 234 (4.6) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{.\overline{1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 239 (4.6) $\left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)! \times \sqrt{.\overline{1}} - 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 240 (4.0) $((1 + 1 + 1)!)! \times \sqrt{.\overline{1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 241 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 1 - 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 242 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 1 \times 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 243 (3.4) $\sqrt[.1] {\sqrt{1+1+1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 244 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 1 \times 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 245 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 1 + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 246 (4.8) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 249 (4.4) $\dfrac{\sqrt{.\overline{1}}}{\left( 1+\sqrt{.\overline{1}} \right) \pmf} - 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 250 (3.6) $(1 + 1) \pm ^{-1-1} \pm$ Paolo Pellegrini, 9/10Martina Franca, Italy 251 (4.4) $\dfrac{ \sqrt{.\overline{1}}}{\left( 1+\sqrt{.\overline{1}} \right) \pmf} + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 252 (4.6) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{.\overline{1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 253 (4.4) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{.1}$ Paolo Pellegrini, 9/10Martina Franca, Italy 254 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 11$ Paolo Pellegrini, 9/10Martina Franca, Italy 259 (4.8) $\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}] {.\overline{1}\%}} \right)\% - 11$ Paolo Pellegrini, 9/10Martina Franca, Italy 260 (4.6) $\dfrac{ \sqrt{ \sqrt[-\sqrt{.\overline{1}}] {.\overline{1}}} -1}{.1}$ Paolo Pellegrini, 9/10Martina Franca, Italy 261 (4.2) $\dfrac{ \sqrt{\dfrac{1}{.\overline{1}\%}} -1}{.\overline{1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 264 (4.6) $11 \times (1 - \log(1 \pm))!$ Paolo Pellegrini, 9/10Martina Franca, Italy 267 (4.0) $\dfrac{1-11\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 268 (4.8) $\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% -1 -1$ Paolo Pellegrini, 9/10Martina Franca, Italy 269 (4.0) $\dfrac{1-.1}{\sqrt{.\overline{1}}\%} - 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 270 (3.2) $\dfrac{.1+.1+.1}{.\overline{1}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 271 (4.0) $\dfrac{1-.1}{\sqrt{.\overline{1}}\%} + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 272 (4.8) $\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% + 1 + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 273 (4.2) $\dfrac{1-.1+1\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 275 (4.6) $\dfrac{11}{(1-\log(1 \pm))\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 276 (4.8) $1 - \dfrac{11}{\log (.1 \% \pm)}$ Paolo Pellegrini, 1/18Martina Franca, Italy 279 (4.2) $\dfrac{ \sqrt{ \dfrac{1}{.\overline{1}\%}} +1}{.\overline{1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 280 (3.4) $\dfrac{.1+.1+.\overline{1}}{.\overline{1}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 281 (4.8) $\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% + 11$ Paolo Pellegrini, 9/10Martina Franca, Italy 282 (4.4) $\dfrac{ \sqrt{.\overline{1}} -(1+1)\%}{.\overline{1}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 287 (4.8) $\dfrac{1- \sqrt{.\overline{1}\%} -1\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 288 (3.8) $\dfrac{ \sqrt[.1]{\sqrt{1+1}}}{.\overline{1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 289 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} - 11$ Paolo Pellegrini, 9/10Martina Franca, Italy 290 (3.6) $\dfrac{.1 +.\overline{1} +.\overline{1}}{.\overline{1}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 291 (4.2) $\dfrac{1}{\sqrt{.\overline{1}}\%} - \dfrac{1}{.\overline{1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 292 (4.4) $\dfrac{\sqrt{.\overline{1}} -1\%}{.\overline{1}\%} + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 293 (4.8) $\dfrac{1+ \sqrt{.\overline{1}\%} + 1\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 294 (4.0) $\dfrac{1 - (1+1)\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 295 (4.8) $\log \left( 1 \pm ^{1 - 1/(1\%)} \% \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 296 (4.0) $\dfrac{1-1\%}{\sqrt{.\overline{1}}\%} - 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 297 (3.8) $\dfrac{ \dfrac{1}{1\%} -1}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 298 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} - 1 - 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 299 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} - 1 \times 1$ Steve Wilson, 9/10Raytown, MO 300 (2.2) $\dfrac{1+1+1}{1\%}$ Steve Wilson, 2/10Raytown, MO 301 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} + 1 \times 1$ Steve Wilson, 9/10Raytown, MO 302 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} + 1 + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 303 (3.8) $\dfrac{ \dfrac{1}{1\%} + 1}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 304 (4.0) $\dfrac{1+1\%}{\sqrt{.\overline{1}}\%} + 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 305 (4.8) $1 + 1 - \log \left( \sqrt[1\%]{1 \pmf} \pm \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 306 (4.0) $\dfrac{1+(1+1)\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 307 (4.8) $\dfrac{1+\sqrt{.\overline{1}\%} -1\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10Martina Franca, Italy 308 (4.4) $\dfrac{\sqrt{.\overline{1}} +1\%}{.\overline{1}\%} - 1$ Paolo Pellegrini, 9/10Martina Franca, Italy 309 (4.2) $\dfrac{ \dfrac{\sqrt{.\overline{1}}}{1\%} +1}{.\overline{1}}$ Paolo Pellegrini, 9/10Martina Franca, Italy 310 (4.0) $\dfrac{\sqrt{.1-1\%} +1\%}{1 \pmf}$ Paolo Pellegrini, 9/10Martina Franca, Italy 311 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} + 11$ Paolo Pellegrini, 5/11Martina Franca, Italy 312 (4.8) $\left(\left( \sqrt{.\overline{1}} \right)! \right)! \times \left(\sqrt{.\overline{1}} + .1 \right)$ Paolo Pellegrini, 5/11Martina Franca, Italy 313 (4.8) $\dfrac{1+ \sqrt{.\overline{1}\%} +1\%}{\sqrt{.\overline{1}}\%}$ Steve Wilson, 9/10Raytown, MO 314 (4.8) $11 - \log \left( \sqrt[1\%]{1 \pmf} \pm \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 315 (8.2) $\left( \dfrac{1}{.\overline{1}} \right) !! \times \sqrt{.\overline{1}} \times 1$ Jonathan Frank, 3/21Rye, NY 316 (8.2) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \sqrt{.\overline{1}} + 1$ Jonathan Frank, 3/21Rye, NY 318 (4.4) $\dfrac{ \sqrt{.\overline{1}} +(1+1)\%}{.\overline{1}\%}$ Steve Wilson, 9/10Raytown, MO 319 (4.8) $\dfrac{ \sqrt[.1]{\sec \arctan 1}}{.1} - 1$ Paolo Pellegrini, 1/18Martina Franca, Italy 320 (3.6) $\dfrac{ \sqrt[.1]{\sqrt{1+1}}}{.1}$ Paolo Pellegrini, 5/11Martina Franca, Italy 321 (4.8) $\dfrac{ \sqrt[.1]{\sec \arctan 1}}{.1} + 1$ Paolo Pellegrini, 1/18Martina Franca, Italy 323 (4.6) $\dfrac{\sqrt{.\overline{1}} - 1\%}{1 \pmf} - \sqrt{.\overline{1}}$ Paolo Pellegrini, 5/11Martina Franca, Italy 324 (4.8) $\left( 1 + \sqrt{.\overline{1}} \right) \times \sqrt{ \sqrt[-.1]{\sqrt{.\overline{1}}}}$ Paolo Pellegrini, 5/11Martina Franca, Italy 325 (4.6) $\dfrac{\sqrt{.\overline{1}} + .1}{\left(1 + \sqrt{.\overline{1}}\right) \pmf}$ Paolo Pellegrini, 5/11Martina Franca, Italy 327 (4.0) $\dfrac{1.1-1\%}{\sqrt{.\overline{1}}\%}$ Steve Wilson, 9/10Raytown, MO 329 (3.8) $\dfrac{11}{\sqrt{.\overline{1}\%}} - 1$ Paolo Pellegrini, 5/11Martina Franca, Italy 330 (3.8) $\dfrac{11}{\sqrt{.\overline{11}\%}}$ Paolo Pellegrini, 5/11Martina Franca, Italy 331 (3.8) $\dfrac{11}{\sqrt{.\overline{1}\%}} + 1$ Paolo Pellegrini, 5/11Martina Franca, Italy 332 (4.4) $\dfrac{\sqrt{.\overline{1}}}{1 \pmf} - 1 - \sqrt{.\overline{1}}$ Paolo Pellegrini, 5/11Martina Franca, Italy 333 (3.6) $\dfrac{111}{\sqrt{.\overline{1}}}$ Steve Wilson, 11/09Raytown, MO 334 (4.4) $\dfrac{\sqrt{.\overline{1}}}{1 \pmf} + 1 - \sqrt{.\overline{1}}$ Paolo Pellegrini, 5/11Martina Franca, Italy 336 (4.8) $\dfrac{.\overline{1} + (1 - .\overline{1}) \pmf}{\sqrt{.\overline{1}} \pmf}$ Paolo Pellegrini, 5/11Martina Franca, Italy 340 (4.4) $\dfrac{11 + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 5/11Martina Franca, Italy 343 (4.4) $\sqrt{\sqrt[-.1]{\sqrt{.\overline{1}}}} + \dfrac{1}{1\%}$ Paolo Pellegrini, 5/11Martina Franca, Italy 350 (4.6) $\dfrac{\sqrt{.\overline{1}} - .1}{\left(1 - \sqrt{.\overline{1}}\right) \pmf}$ Paolo Pellegrini, 5/11Martina Franca, Italy 352 (4.6) $\dfrac{11}{\sqrt[.1]{\cos \arctan 1}}$ Paolo Pellegrini, 1/18Martina Franca, Italy 360 (3.8) $\dfrac{11 + 1}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 5/11Martina Franca, Italy 361 (4.8) $\cosh \left( \dfrac{ \operatorname{arccsch} \sqrt{1+1}}{.1} \right) - 1$ Paolo Pellegrini, 1/18Martina Franca, Italy 362 (4.8) $\cosh \left( (11-1) \times \operatorname{arcsinh} \cos \arctan 1 \right)$ Paolo Pellegrini, 1/18Martina Franca, Italy 363 (4.8) $\cosh \left( \dfrac{ \operatorname{arccsch} \sqrt{1+1}}{.1} \right) + 1$ Paolo Pellegrini, 1/18Martina Franca, Italy 370 (4.6) $\dfrac{1 - .1 + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 5/11Martina Franca, Italy 374 (4.2) $\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} - 1$ Paolo Pellegrini, 5/11Martina Franca, Italy 375 (4.2) $\dfrac{\sqrt{.\overline{11}}}{(1 - .\overline{1}) \pmf}$ Paolo Pellegrini, 5/11Martina Franca, Italy 376 (4.2) $\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} + 1$ Paolo Pellegrini, 5/11Martina Franca, Italy 381 (4.6) $\dfrac{ \sqrt{.\overline{1}} +.1-1\%}{.\overline{1}\%}$ Steve Wilson, 9/10Raytown, MO 383 (7.6) $\left( \dfrac{1}{.1} \right)!! \times .1 - 1$ Jonathan Frank, 3/21Rye, NY 384 (7.6) $\left( \dfrac{1}{.1} \right)!! \times .1 \times 1$ Jonathan Frank, 3/21Rye, NY 385 (7.6) $\left( \dfrac{1}{.1} \right)!! \times .1 + 1$ Jonathan Frank, 3/21Rye, NY 389 (4.6) $\dfrac{\sqrt{.\overline{1}} + .1}{\sqrt{.\overline{1}\%}} - 1$ Paolo Pellegrini, 5/11Martina Franca, Italy 390 (4.6) $\dfrac{\sqrt{.\overline{11}} + .1}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 5/11Martina Franca, Italy 391 (4.6) $\dfrac{\sqrt{.\overline{1}} + .1}{\sqrt{.\overline{1}\%}} + 1$ Paolo Pellegrini, 5/11Martina Franca, Italy 395 (4.8) $\dfrac{ \sinh \left( \ln \dfrac{1}{.1} \right) - 1}{1\%}$ Paolo Pellegrini, 1/18Martina Franca, Italy 396 (4.8) $\left( 1 - \dfrac{1}{1\%} \right) \times \log (1 \% \%)$ Paolo Pellegrini, 1/18Martina Franca, Italy 397 (4.6) $\dfrac{1 - 1\% + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}} \%}$ Paolo Pellegrini, 1/18Martina Franca, Italy 399 (4.4) $\dfrac{ \sqrt{.\overline{1}} +11\%}{.\overline{1}\%}$ Steve Wilson, 9/10Raytown, MO 400 (3.4) $\dfrac{1 - .\overline{1}}{(.\overline{1} + .\overline{1})\%}$ Paolo Pellegrini, 1/18Martina Franca, Italy

Page 1 (1-400), Page 2 (401+).