$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

Integermania!

Quattro Ones

This problem was proposed by Integermaniac master Paolo Pellegrini.  Create each of the positive integers using four copies of 1, and any standard operations.  All four numbers must be used, but no others.  Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here!  Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400), Page 2 (401+).

 447 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} + \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 448 (4.4) $\left( \dfrac{1}{.1} \right)! \times .\overline{1} \times .\overline{1}\%$ Jonathan Frank, 3/21Rye, NY 449 (3.0) $\dfrac{1}{(.\overline{1}+.\overline{1})\%} - 1$ Steve Wilson, 3/10Raytown, MO 450 (2.6) $\dfrac{1}{(1+1) \times .\overline{1}\%}$ Steve Wilson, 2/10Raytown, MO 451 (3.0) $\dfrac{1}{(.\overline{1}+.\overline{1})\%} + 1$ Steve Wilson, 3/10Raytown, MO 452 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} - \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 453 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} - \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 495 (2.8) $\dfrac{1-1\%}{(.1+.1)\%}$ Steve Wilson, 3/10Raytown, MO 499 (2.6) $\dfrac{1}{(.1+.1)\%} - 1$ Steve Wilson, 4/10Raytown, MO 500 (2.4) $\dfrac{1}{(1+1) \times .1\%}$ Steve Wilson, 2/10Raytown, MO 501 (2.6) $\dfrac{1}{(.1+.1)\%} + 1$ Steve Wilson, 4/10Raytown, MO 505 (2.8) $\dfrac{1+1\%}{(.1+.1)\%}$ Steve Wilson, 4/10Raytown, MO 511 (3.4) $\sqrt[.\overline{1}]{1 + 1} - 1$ Steve Wilson, 3/12Raytown, MO 512 (3.4) $\sqrt[.\overline{1}]{1 + 1} \times 1$ Steve Wilson, 3/12Raytown, MO 513 (3.4) $\sqrt[.\overline{1}]{1 + 1} + 1$ Steve Wilson, 3/12Raytown, MO 540 (4.0) $\dfrac{(1 + 1 + 1)!\%}{.\overline{1} \pmf}$ Steve Wilson, 3/12Raytown, MO 550 (2.2) $\dfrac{11}{(1+1)\%}$ Steve Wilson, 2/10Raytown, MO 555 (4.8) $\ln \sqrt[.1]{\sqrt{\exp(111)}}$ Paolo Pellegrini, 9/14Martina Franca, Italy 600 (3.4) $\dfrac{(1 + 1 + 1)!}{1\%}$ Steve Wilson, 3/12Raytown, MO 719 (3.4) $((1 + 1 + 1)!)! - 1$ Steve Wilson, 3/12Raytown, MO 720 (3.0) $\dfrac{1-.1-.1}{.\overline{1}\%}$ Steve Wilson, 4/10Raytown, MO 721 (3.4) $((1 + 1 + 1)!)! + 1$ Steve Wilson, 3/12Raytown, MO 729 (3.2) $\dfrac{1}{.\overline{1} \times .\overline{1} \times .\overline{1}}$ Jonathan Frank, 3/21Rye, NY 768 (7.8) $\left( \dfrac{1}{.1} \right)!! \times (.1 + .1)$ Jonathan Frank, 3/21Rye, NY 799 (3.0) $\dfrac{1-.\overline{1}}{.\overline{1}\%} - 1$ Steve Wilson, 4/10Raytown, MO 800 (2.6) $\dfrac{ \dfrac{1}{.\overline{1}} -1}{1\%}$ Steve Wilson, 2/10Raytown, MO 801 (2.8) $\dfrac{1-.11}{.\overline{1}\%}$ Steve Wilson, 5/10Raytown, MO 809 (2.8) $\dfrac{1-.1}{.\overline{1}\%} - 1$ Steve Wilson, 5/10Raytown, MO 810 (2.8) $\dfrac{1-.1}{.\overline{1}\%} \times 1$ Steve Wilson, 5/10Raytown, MO 811 (2.8) $\dfrac{1-.1}{.\overline{1}\%} + 1$ Steve Wilson, 5/10Raytown, MO 819 (3.0) $\dfrac{1-.1+1\%}{.\overline{1}\%}$ Steve Wilson, 5/10Raytown, MO 845 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! - \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 882 (2.8) $\dfrac{1-(1+1)\%}{.\overline{1}\%}$ Steve Wilson, 6/10Raytown, MO 889 (2.6) $\dfrac{1}{.\overline{1}\%} - 11$ Steve Wilson, 6/10Raytown, MO 890 (2.6) $\dfrac{1-.11}{.1\%}$ Steve Wilson, 6/10Raytown, MO 891 (2.6) $\dfrac{ \dfrac{1}{1\%} -1}{.\overline{1}}$ Steve Wilson, 6/10Raytown, MO 892 (2.8) $\dfrac{1-1\%}{.\overline{1}\%} + 1$ Steve Wilson, 6/10Raytown, MO 898 (2.6) $\dfrac{1}{.\overline{1}\%} - 1 - 1$ Steve Wilson, 5/11Raytown, MO 899 (2.6) $\dfrac{1}{.\overline{1}\%} - 1 \times 1$ Steve Wilson, 5/11Raytown, MO 900 (2.4) $\dfrac{\dfrac{1}{.1} - 1}{1\%}$ Steve Wilson, 5/11Raytown, MO 901 (2.6) $\dfrac{1}{.\overline{1}\%} + 1 \times 1$ Steve Wilson, 5/11Raytown, MO 902 (2.6) $\dfrac{1}{.\overline{1}\%} + 1 + 1$ Steve Wilson, 5/11Raytown, MO 908 (2.8) $\dfrac{1 + 1\%}{.\overline{1}\%} - 1$ Steve Wilson, 5/11Raytown, MO 909 (2.6) $\dfrac{\dfrac{1}{1\%} + 1}{.\overline{1}}$ Steve Wilson, 5/11Raytown, MO 910 (2.8) $\dfrac{1 + 1\%}{.\overline{1}\%} + 1$ Steve Wilson, 5/11Raytown, MO 911 (2.6) $\dfrac{1}{.\overline{1}\%} + 11$ Steve Wilson, 5/11Raytown, MO 918 (2.8) $\dfrac{1 + (1+1)\%}{.\overline{1}\%}$ Steve Wilson, 5/11Raytown, MO 934 (7.6) $\left( \dfrac{1}{.\overline{1}} \right)!! - 11$ Jonathan Frank, 3/21Rye, NY 935 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! - \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 936 (8.0) $\left( \dfrac{1}{.\overline{1}} \right)!! - \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 942 (8.2) $\left( \dfrac{1}{.\overline{1}} \right)!! - \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21Rye, NY 943 (7.6) $\left( \dfrac{1}{.\overline{1}} \right)!! - 1 - 1$ Jonathan Frank, 3/21Rye, NY 944 (7.2) $(11 - 1 - 1)!! - 1$ Jonathan Frank, 3/21Rye, NY 945 (7.2) $\dfrac{11!!}{11}$ Jonathan Frank, 3/21Rye, NY 946 (7.2) $(11 - 1 - 1)!! + 1$ Jonathan Frank, 3/21Rye, NY 947 (7.6) $\left( \dfrac{1}{.\overline{1}} \right)!! + 1 + 1$ Jonathan Frank, 3/21Rye, NY 948 (8.2) $\left( \dfrac{1}{.\overline{1}} \right)!! + \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21Rye, NY 954 (8.0) $\left( \dfrac{1}{.\overline{1}} \right)!! + \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 955 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! + \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 956 (7.6) $\left( \dfrac{1}{.\overline{1}} \right)!! + 11$ Jonathan Frank, 3/21Rye, NY 980 (2.6) $\dfrac{1 - (1+1)\%}{.1\%}$ Steve Wilson, 5/11Raytown, MO 981 (2.8) $\dfrac{1.1 - 1\%}{.\overline{1}\%}$ Steve Wilson, 5/11Raytown, MO 988 (4.6) $\sinh \operatorname{arccsch} (1 \pm) - 11 - 1$ Paolo Pellegrini, 8/10Martina Franca, Italy 989 (2.4) $\dfrac{1}{.1\%} - 11$ Steve Wilson, 12/09Raytown, MO 990 (2.4) $\dfrac{\dfrac{1}{1\%} - 1}{.1}$ Steve Wilson, 5/11Raytown, MO 991 (2.6) $\dfrac{1-1\%}{.1\%} + 1$ Paolo Pellegrini, 8/09Martina Franca, Italy 998 (2.4) $\dfrac{1}{.1\%} - 1 - 1$ Paolo Pellegrini, 8/09Martina Franca, Italy 999 (2.4) $\dfrac{1}{.1\%} \times 1 - 1$ Paolo Pellegrini, 8/09Martina Franca, Italy 1000 (2.2) $\dfrac{11}{1.1\%}$ Lisa Fisher, 7/09Lawrence, KS 1001 (2.4) $\dfrac{1}{.1\%} + 1 \times 1$ Steve Wilson, 12/09Raytown, MO 1002 (2.4) $\dfrac{1}{.1\%} + 1 + 1$ Steve Wilson, 12/09Raytown, MO 1009 (2.6) $\dfrac{1+1\%}{.1\%} - 1$ Steve Wilson, 12/09Raytown, MO 1010 (2.4) $\dfrac{\dfrac{1}{1\%} + 1}{.1}$ Steve Wilson, 5/11Raytown, MO 1011 (2.4) $\dfrac{1}{.1\%} + 11$ Steve Wilson, 12/09Raytown, MO 1012 (4.6) $\sinh \operatorname{arccsch} (1 \pm) + 11 + 1$ Paolo Pellegrini, 8/10Martina Franca, Italy 1020 (2.6) $\dfrac{1 + (1+1)\%}{.1\%}$ Steve Wilson, 5/11Raytown, MO 1024 (4.6) $(-\log{(1\%)})^{11-1}$ Jonathan Frank, 3/21Rye, NY 1045 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! + \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 1080 (2.8) $\dfrac{1.1 + .1}{.\overline{1}\%}$ Steve Wilson, 5/11Raytown, MO 1090 (2.4) $\dfrac{11 - .1}{1\%}$ Steve Wilson, 5/11Raytown, MO 1099 (2.2) $\dfrac{11}{1\%} - 1$ Jordan Cordry, 1/10Overland Park, KS 1100 (2.2) $\dfrac{11}{1\%} \times 1$ Jordan Cordry, 1/10Overland Park, KS 1101 (2.2) $\dfrac{11}{1\%} + 1$ Jordan Cordry, 1/10Overland Park, KS 1110 (2.2) $\dfrac{111}{.1}$ Steve Wilson, 11/09Raytown, MO 1111 (2.0) $1111$ Steve Wilson, 11/09Raytown, MO 1124 (3.0) $\dfrac{.1}{(1-.\overline{1})\%\%} - 1$ Steve Wilson, 10/11Raytown, MO 1125 (2.8) $\dfrac{1}{(1-.\overline{1}) \times .1\%}$ Steve Wilson, 10/11Raytown, MO 1126 (3.0) $\dfrac{.1}{(1-.\overline{1})\%\%} + 1$ Steve Wilson, 10/11Raytown, MO 1154 (7.6) $11!! \times .\overline{1} - 1$ Jonathan Frank, 3/21Rye, NY 1155 (7.6) $11!! \times .\overline{1} \times 1$ Jonathan Frank, 3/21Rye, NY 1156 (7.6) $11!! \times .\overline{1} + 1$ Jonathan Frank, 3/21Rye, NY 1200 (2.2) $\dfrac{11 + 1}{1\%}$ Steve Wilson, 10/11Raytown, MO 1250 (2.6) $\dfrac{1}{(.1 - (1 + 1)\%)\%}$ Steve Wilson, 10/11Raytown, MO 1277 (8.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} + \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 1278 (8.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} + \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 1279 (8.0) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} - 1$ Jonathan Frank, 3/21Rye, NY 1280 (8.0) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} \times 1$ Jonathan Frank, 3/21Rye, NY 1281 (8.0) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} + 1$ Jonathan Frank, 3/21Rye, NY 1282 (8.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} - \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 1283 (8.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} - \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 1393 (4.6) $\sinh \left( \left( \dfrac{1}{.1}-1 \right) \operatorname{arccsch} 1 \right)$ Paolo Pellegrini, 8/10Martina Franca, Italy 1700 (3.0) $\dfrac{1 + 1 - .\overline{1}}{.\overline{1}\%}$ Steve Wilson, 10/11Raytown, MO 1710 (2.8) $\dfrac{1 + 1 - .1}{.\overline{1}\%}$ Steve Wilson, 10/11Raytown, MO 1791 (2.8) $\dfrac{1 + 1 - 1\%}{.\overline{1}\%}$ Steve Wilson, 10/11Raytown, MO 1799 (2.6) $\dfrac{1 + 1}{.\overline{1}\%} - 1$ Steve Wilson, 10/11Raytown, MO 1800 (2.6) $\dfrac{1 + 1}{.\overline{1} \times 1\%}$ Steve Wilson, 10/11Raytown, MO 1801 (2.6) $\dfrac{1 + 1}{.\overline{1}\%} + 1$ Steve Wilson, 10/11Raytown, MO 1809 (2.8) $\dfrac{1 + 1 + 1\%}{.\overline{1}\%}$ Steve Wilson, 10/11Raytown, MO 1890 (2.6) $\dfrac{1.1 + 1}{.\overline{1}\%}$ Steve Wilson, 10/11Raytown, MO 1900 (2.6) $\dfrac{1 + 1 - .1}{.1\%}$ Steve Wilson, 10/11Raytown, MO 1945 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! + \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 1990 (2.6) $\dfrac{1 + 1 - 1\%}{.1\%}$ Steve Wilson, 10/11Raytown, MO 1999 (2.4) $\dfrac{1 + 1}{.1\%} - 1$ Steve Wilson, 10/11Raytown, MO 2000 (2.4) $\dfrac{1 + 1}{.1\%} \times 1$ Steve Wilson, 10/11Raytown, MO 2001 (2.4) $\dfrac{1 + 1}{.1\%} + 1$ Steve Wilson, 10/11Raytown, MO 2010 (2.6) $\dfrac{1 + 1 + 1\%}{.1\%}$ Steve Wilson, 10/11Raytown, MO 2045 (5.0) $(-\log{(1\%)})^{11} + \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 2046 (5.0) $(-\log{(1\%)})^{11} + \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 2047 (4.6) $(-\log{(1\%)})^{11} - 1$ Jonathan Frank, 3/21Rye, NY 2048 (3.0) $(1 + 1)^{11}$ Kashmira Sayani, 3/17Overland Park, KS 2049 (4.6) $(-\log{(1\%)})^{11} + 1$ Jonathan Frank, 3/21Rye, NY 2050 (5.0) $(-\log{(1\%)})^{11} - \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 2051 (5.0) $(-\log{(1\%)})^{11} - \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 2079 (7.6) $11!! \times (.1 + .1)$ Jonathan Frank, 3/21Rye, NY 2100 (2.4) $\dfrac{1.1 + 1}{.1\%}$ Steve Wilson, 10/11Raytown, MO 2310 (8.0) $11!! \times (.\overline{1} + .\overline{1})$ Jonathan Frank, 3/21Rye, NY 2700 (2.6) $\dfrac{1 + 1 + 1}{.\overline{1}\%}$ Steve Wilson, 11/11Raytown, MO 2835 (8.2) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \sqrt{ \dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21Rye, NY 2840 (7.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 3000 (2.4) $\dfrac{1 + 1 + 1}{.1\%}$ Steve Wilson, 11/11Raytown, MO 3464 (7.8) $11!! \times \sqrt{.\overline{1}} - 1$ Jonathan Frank, 3/21Rye, NY 3465 (7.8) $11!! \times \sqrt{.\overline{1}} \times 1$ Jonathan Frank, 3/21Rye, NY 3466 (7.8) $11!! \times \sqrt{.\overline{1}} + 1$ Jonathan Frank, 3/21Rye, NY 3740 (7.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 3829 (7.4) $\left( \dfrac{1}{.1} \right)!! - 11$ Jonathan Frank, 3/21Rye, NY 3830 (7.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 3831 (7.8) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 3837 (8.0) $\left( \dfrac{1}{.1} \right)!! - \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21Rye, NY 3838 (7.4) $\left( \dfrac{1}{.1} \right)!! - 1 - 1$ Jonathan Frank, 3/21Rye, NY 3839 (7.2) $(11 - 1)!! - 1$ Jonathan Frank, 3/21Rye, NY 3840 (7.2) $(11 - 1)!! \times 1$ Jonathan Frank, 3/21Rye, NY 3841 (7.2) $(11 - 1)!! + 1$ Jonathan Frank, 3/21Rye, NY 3842 (7.4) $\left( \dfrac{1}{.1} \right)!! + 1 + 1$ Jonathan Frank, 3/21Rye, NY 3843 (8.0) $\left( \dfrac{1}{.1} \right)!! + \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21Rye, NY 3849 (7.8) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 3850 (7.6) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 3851 (7.4) $\left( \dfrac{1}{.1} \right)!! + 11$ Jonathan Frank, 3/21Rye, NY 3940 (7.4) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 4032 (4.0) $\left( \dfrac{1}{.1} \right)! \times .\overline{1} \times 1\%$ Jonathan Frank, 3/21Rye, NY 4096 (4.6) $(-\log{(1\%)})^{11+1}$ Jonathan Frank, 3/21Rye, NY 4224 (7.4) $\left( \dfrac{1}{.1} \right)!! \times 1.1$ Jonathan Frank, 3/21Rye, NY 4480 (4.4) $\left( \dfrac{1}{.\overline{1}} \right)! \times .\overline{1} \times .\overline{1}$ Jonathan Frank, 3/21Rye, NY 4500 (2.6) $\dfrac{1 - .1}{(1 + 1)\%\%}$ Steve Wilson, 11/11Raytown, MO 4840 (7.4) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 4928 (8.2) $11!! \times .\overline{1} \times .\overline{1}\%$ Jonathan Frank, 3/21Rye, NY 4950 (2.6) $\dfrac{1 - 1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11Raytown, MO 4995 (2.8) $\dfrac{1 - .1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11Raytown, MO 4999 (2.4) $\dfrac{1}{(1 + 1)\%\%} - 1$ Steve Wilson, 11/11Raytown, MO 5000 (2.4) $\dfrac{1}{(1 + 1)\%\%} \times 1$ Steve Wilson, 11/11Raytown, MO 5001 (2.4) $\dfrac{1}{(1 + 1)\%\%} + 1$ Steve Wilson, 11/11Raytown, MO 5005 (2.8) $\dfrac{1 + .1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11Raytown, MO 5050 (2.6) $\dfrac{1 + 1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11Raytown, MO 5400 (3.8) $\dfrac{(1 + 1 + 1)!}{.\overline{1}\%}$ Jonathan Frank, 3/21Rye, NY 5500 (2.4) $\dfrac{1.1}{(1 + 1)\%\%}$ Steve Wilson, 11/11Raytown, MO 6000 (3.4) $\dfrac{(1 + 1 + 1)!}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 6480 (3.8) $\dfrac{((1 + 1 + 1)!)!}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 6561 (5.0) $(-\log{(1 \pm)})^{11 + \log{(1 \pm)}}$ Jonathan Frank, 3/21Rye, NY 7200 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}} - 1}{.\overline{1}\%}$ Steve Wilson, 8/13Raytown, MO 7680 (7.4) $\left( \dfrac{1}{.1} \right)!! \times (1 + 1)$ Jonathan Frank, 3/21Rye, NY 8000 (2.8) $\dfrac{1 - .1 - .1}{1\%\%}$ Steve Wilson, 8/13Raytown, MO 8091 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}\%} - 1}{.\overline{1}}$ Steve Wilson, 8/13Raytown, MO 8099 (3.0) $\dfrac{1}{.\overline{1} \times .\overline{1}\%} - 1$ Steve Wilson, 8/13Raytown, MO 8100 (2.8) $\dfrac{ \dfrac{1}{.1} - 1}{.\overline{1}\%}$ Steve Wilson, 8/13Raytown, MO 8101 (3.0) $\dfrac{1}{.\overline{1} \times .\overline{1}\%} + 1$ Steve Wilson, 8/13Raytown, MO 8109 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}\%} + 1}{.\overline{1}}$ Steve Wilson, 8/13Raytown, MO 8192 (5.0) $(-\log{(1\%)})^{11-\log{(1\%)}}$ Jonathan Frank, 3/21Rye, NY 8505 (8.0) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 9000 (3.6) $\dfrac{1}{1\%\%} - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 9011 (3.6) $\dfrac{1}{.\overline{1} \pmf} + 11$ Jonathan Frank, 3/21Rye, NY 9395 (7.4) $11!! - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 9450 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 9801 (4.6) $( 1-\sinh \operatorname{arccsch} (1\%))^{1+1}$ Paolo Pellegrini, 8/10Martina Franca, Italy 9900 (2.6) $\dfrac{1}{1\%\%} - \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 9989 (2.4) $\dfrac{1}{1\%\%} - 11$ Jonathan Frank, 3/21Rye, NY 9990 (2.6) $\dfrac{1}{1\%\%} - \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 9998 (2.4) $\dfrac{1}{1\%\%} - 1 - 1$ Jonathan Frank, 3/21Rye, NY 9999 (2.4) $\dfrac{1}{1\%\%} - 1 \times 1$ Jonathan Frank, 3/21Rye, NY 10000 (2.4) $\dfrac{1}{1\%\%} + 1 - 1$ Jonathan Frank, 3/21Rye, NY 10001 (2.4) $\dfrac{1}{1\%\%} + 1 \times 1$ Jonathan Frank, 3/21Rye, NY 10002 (2.4) $\dfrac{1}{1\%\%} + 1 + 1$ Jonathan Frank, 3/21Rye, NY 10010 (2.6) $\dfrac{1}{1\%\%} + \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 10011 (2.4) $\dfrac{1}{1\%\%} + 11$ Jonathan Frank, 3/21Rye, NY 10100 (2.6) $\dfrac{1}{1\%\%} + \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 10295 (7.4) $11!! - \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 10384 (7.2) $11!! - 11$ Jonathan Frank, 3/21Rye, NY 10385 (7.4) $11!! - \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 10386 (7.6) $11!! - \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 10392 (7.6) $11!! - \log \left( \dfrac{1}{1 \pmf} \right)$ Jonathan Frank, 3/21Rye, NY 10393 (7.2) $11!! - 1 - 1$ Jonathan Frank, 3/21Rye, NY 10394 (7.2) $11!! - 1 \times 1$ Jonathan Frank, 3/21Rye, NY 10395 (7.2) $11!! \times 1 \times 1$ Jonathan Frank, 3/21Rye, NY 10396 (7.2) $11!! + 1 \times 1$ Jonathan Frank, 3/21Rye, NY 10397 (7.2) $11!! + 1 + 1$ Jonathan Frank, 3/21Rye, NY 10398 (7.6) $11!! + \log \left( \dfrac{1}{1 \pmf} \right)$ Jonathan Frank, 3/21Rye, NY 10404 (7.6) $11!! + \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 10405 (7.4) $11!! + \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 10406 (7.6) $11!! + 11$ Jonathan Frank, 3/21Rye, NY 10495 (7.4) $11!! + \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 11000 (2.4) $\dfrac{11}{.1 \times 1\%}$ Luke Sauvadon, 6/12Lawrence, KS 11100 (2.2) $\dfrac{111}{1\%}$ Lisa Fisher, 7/09Lawrence, KS 11395 (7.4) $11!! + \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 11520 (8.0) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21Rye, NY 11550 (7.8) $11!! \times \dfrac{.\overline{1}}{.1}$ Jonathan Frank, 3/21Rye, NY 12000 (3.2) $\dfrac{11 + 1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 16384 (5.0) $(-\log{(1\%)})^{11-\log{(1\pm)}}$ Jonathan Frank, 3/21Rye, NY 19683 (5.0) $(-\log{(1 \pm)})^{11 + \log{(1 \%)}}$ Jonathan Frank, 3/21Rye, NY 20790 (7.2) $11!! \times (1 + 1)$ Jonathan Frank, 3/21Rye, NY 31185 (7.6) $11!! \times \log \left( \dfrac{1}{1 \pmf} \right)$ Jonathan Frank, 3/21Rye, NY 34560 (7.8) $\left( \dfrac{1}{.1} \right)!! \times \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 34650 (8.0) $\dfrac{11!!}{.1} \times \sqrt{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 36287 (3.4) $(11 - 1)! \% - 1$ Jonathan Frank, 3/21Rye, NY 36288 (3.4) $(11 - 1)! \% \times 1$ Jonathan Frank, 3/21Rye, NY 36289 (3.4) $(11 - 1)! \% + 1$ Jonathan Frank, 3/21Rye, NY 38400 (7.6) $\left( \dfrac{1}{.1} \right)!! \times \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 42240 (7.4) $\left( \dfrac{1}{.1} \right)!! \times 11$ Jonathan Frank, 3/21Rye, NY 44351 (3.8) $11!\% \times .\overline{1} - 1$ Jonathan Frank, 3/21Rye, NY 44352 (3.8) $11! \times .\overline{1} \times 1\%$ Jonathan Frank, 3/21Rye, NY 44353 (3.8) $11!\% \times .\overline{1} + 1$ Jonathan Frank, 3/21Rye, NY 44800 (4.2) $\left( \dfrac{1}{.1} \right)! \times .\overline{1} \times .\overline{1}$ Jonathan Frank, 3/21Rye, NY 46079 (7.2) $(11 + 1)!! - 1$ Jonathan Frank, 3/21Rye, NY 46080 (7.2) $(11 + 1)!! \times 1$ Jonathan Frank, 3/21Rye, NY 46081 (7.2) $(11 + 1)!! + 1$ Jonathan Frank, 3/21Rye, NY 51975 (7.6) $\dfrac{11!!}{.1 + .1}$ Jonathan Frank, 3/21Rye, NY 54000 (3.8) $\dfrac{(1 + 1 + 1)!}{.\overline{1}\pmf}$ Jonathan Frank, 3/21Rye, NY 59049 (4.6) $(-\log{(1 \pm)})^{11-1}$ Jonathan Frank, 3/21Rye, NY 64800 (4.2) $\dfrac{((1 + 1 + 1)!)!\%}{.\overline{1}\pmf}$ Jonathan Frank, 3/21Rye, NY 93552 (8.0) $\dfrac{11!!}{.\overline{1}} + \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 93553 (8.0) $\dfrac{11!!}{.\overline{1}} + \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 93554 (7.6) $\dfrac{11!!}{.\overline{1}} - 1$ Jonathan Frank, 3/21Rye, NY 93555 (7.6) $11!! \times \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 93556 (7.6) $\dfrac{11!!}{.\overline{1}} + 1$ Jonathan Frank, 3/21Rye, NY 93557 (8.0) $\dfrac{11!!}{.\overline{1}} - \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 93558 (8.0) $\dfrac{11!!}{.\overline{1}} - \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 94500 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 100000 (3.4) $\dfrac{1}{1\%} \times \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 103947 (7.8) $\dfrac{11!!}{.1} + \log(1 \pm)$ Jonathan Frank, 3/21Rye, NY 103948 (7.8) $\dfrac{11!!}{.1} + \log(1 \%)$ Jonathan Frank, 3/21Rye, NY 103949 (7.4) $\dfrac{11!!}{.1} - 1$ Jonathan Frank, 3/21Rye, NY 103950 (7.4) $11!! \times \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 103951 (7.4) $\dfrac{11!!}{.1} + 1$ Jonathan Frank, 3/21Rye, NY 103952 (7.8) $\dfrac{11!!}{.1} - \log(1 \%)$ Jonathan Frank, 3/21Rye, NY 103953 (7.8) $\dfrac{11!!}{.1} - \log(1 \pm)$ Jonathan Frank, 3/21Rye, NY 111000 (2.4) $\dfrac{111}{.1\%}$ Lisa Fisher, 7/09Lawrence, KS 114345 (7.2) $11!! \times 11$ Jonathan Frank, 3/21Rye, NY 133055 (4.0) $11!\% \times \sqrt{.\overline{1}} - 1$ Jonathan Frank, 3/21Rye, NY 133056 (4.0) $11!\% \times \sqrt{.\overline{1}} \times 1$ Jonathan Frank, 3/21Rye, NY 133057 (4.0) $11!\% \times \sqrt{.\overline{1}} + 1$ Jonathan Frank, 3/21Rye, NY 135135 (7.2) $(11 + 1 + 1)!!$ Jonathan Frank, 3/21Rye, NY 161050 (3.4) $\sqrt[.1]{\sqrt{11}} - 1$ Jonathan Frank, 3/21Rye, NY 161051 (3.4) $\sqrt[.1]{\sqrt{11}} \times 1$ Jonathan Frank, 3/21Rye, NY 161052 (3.4) $\sqrt[.1]{\sqrt{11}} + 1$ Jonathan Frank, 3/21Rye, NY 177144 (5.0) $(-\log{(1 \pm)})^{11} + \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 177145 (5.0) $(-\log{(1 \pm)})^{11} + \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 177146 (4.6) $(-\log{(1 \pm)})^{11} - 1$ Jonathan Frank, 3/21Rye, NY 177147 (4.4) $\left( \log \left( \dfrac{1}{1 \pmf} \right)\right)^{11}$ Jonathan Frank, 3/21Rye, NY 177148 (4.6) $(-\log{(1 \pm)})^{11} + 1$ Jonathan Frank, 3/21Rye, NY 177149 (5.0) $(-\log{(1 \pm)})^{11} - \log{(1 \%)}$ Jonathan Frank, 3/21Rye, NY 177150 (5.0) $(-\log{(1 \pm)})^{11} - \log{(1 \pm)}$ Jonathan Frank, 3/21Rye, NY 181440 (3.6) $\dfrac{ \left( \dfrac{1}{.\overline{1}} \right)!}{1 + 1}$ Jonathan Frank, 3/21Rye, NY 199584 (3.4) $\dfrac{11!\%}{1 + 1}$ Jonathan Frank, 3/21Rye, NY 384000 (7.6) $\left( \dfrac{1}{.1} \right)!! \times \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 398168 (3.6) $11!\% - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 399068 (3.6) $11!\% - \dfrac{1}{1 \%}$ Jonathan Frank, 3/21Rye, NY 399157 (3.4) $11!\% - 11$ Jonathan Frank, 3/21Rye, NY 399158 (3.6) $11!\% - \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 399159 (3.8) $11!\% - \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 399165 (4.0) $11!\% - \sqrt{ \dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21Rye, NY 399166 (3.4) $11!\% - 1 - 1$ Jonathan Frank, 3/21Rye, NY 399167 (3.4) $11!\% - 1 \times 1$ Jonathan Frank, 3/21Rye, NY 399168 (3.4) $11!\% \times 1 \times 1$ Jonathan Frank, 3/21Rye, NY 399169 (3.4) $11!\% + 1 \times 1$ Jonathan Frank, 3/21Rye, NY 399170 (3.4) $11!\% + 1 + 1$ Jonathan Frank, 3/21Rye, NY 399171 (4.0) $11!\% + \sqrt{ \dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21Rye, NY 399177 (3.8) $11!\% + \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 399178 (3.6) $11!\% + \dfrac{1}{.1}$ Jonathan Frank, 3/21Rye, NY 399179 (3.4) $11!\% + 11$ Jonathan Frank, 3/21Rye, NY 399268 (3.6) $11!\% + \dfrac{1}{1 \%}$ Jonathan Frank, 3/21Rye, NY 400168 (3.6) $11!\% + \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 492800 (4.0) $11! \times .\overline{1} \times .\overline{1}$ Jonathan Frank, 3/21Rye, NY 531441 (4.6) $(-\log{(1 \pm)})^{11+1}$ Jonathan Frank, 3/21Rye, NY 648000 (4.0) $\dfrac{((1 + 1 + 1)!)!}{.\overline{1}\%}$ Jonathan Frank, 3/21Rye, NY 798336 (3.4) $11!\% \times (1 + 1)$ Jonathan Frank, 3/21Rye, NY 945000 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 1000000 (3.4) $\dfrac{1}{1 \pmmf} + 1 - 1$ Jonathan Frank, 3/21Rye, NY 1000002 (3.4) $\dfrac{1}{1 \pmmf} + 1 + 1$ Jonathan Frank, 3/21Rye, NY 1039500 (7.4) $11!! \times \dfrac{1}{1\%}$ Jonathan Frank, 3/21Rye, NY 1110000 (2.4) $\dfrac{111}{1\%\%}$ Jonathan Frank, 3/21Rye, NY 1594323 (5.0) $(-\log{(1 \pm)})^{11-\log{(1\%)}}$ Jonathan Frank, 3/21Rye, NY 3628799 (3.2) $(11 - 1)! - 1$ Jonathan Frank, 3/21Rye, NY 3628800 (3.2) $(11 - 1)! \times 1$ Jonathan Frank, 3/21Rye, NY 3628801 (3.2) $(11 - 1)! + 1$ Jonathan Frank, 3/21Rye, NY 3840000 (7.6) $\left( \dfrac{1}{.1} \right)!! \times \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 4194304 (4.6) $\left( \log \left( \dfrac{1}{1\%\%} \right)\right)^{11}$ Jonathan Frank, 3/21Rye, NY 4782969 (5.0) $(-\log{(1 \pm)})^{11-\log{(1\pm)}}$ Jonathan Frank, 3/21Rye, NY 10000000 (3.6) $\dfrac{1}{1\% \times 1 \pm \times 1\%}$ Jonathan Frank, 3/21Rye, NY 10395000 (7.4) $11!! \times \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21Rye, NY 39916789 (3.2) $11! - 11$ Jonathan Frank, 3/21Rye, NY 39916798 (3.2) $11! - 1 - 1$ Jonathan Frank, 3/21Rye, NY 39916799 (3.2) $11! - 1 \times 1$ Jonathan Frank, 3/21Rye, NY 39916800 (3.2) $11! \times 1 \times 1$ Jonathan Frank, 3/21Rye, NY 39916801 (3.2) $11! + 1 \times 1$ Jonathan Frank, 3/21Rye, NY 39916801 (3.2) $11! + 1 + 1$ Jonathan Frank, 3/21Rye, NY 39916811 (3.2) $11! + 11$ Jonathan Frank, 3/21Rye, NY 48828125 (4.6) $\left( \log \left( \dfrac{1}{1\% \pmf} \right)\right)^{11}$ Jonathan Frank, 3/21Rye, NY 100000000 (3.4) $\left( \dfrac{1}{1\%\%} \right)^{1+1}$ Jonathan Frank, 3/21Rye, NY 362797056 (4.6) $\left( \log \left( \dfrac{1}{1 \pmmf} \right)\right)^{11}$ Jonathan Frank, 3/21Rye, NY 387420489 (4.2) $\left( \dfrac{1}{.\overline{1}} \right)^{1/.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 1000000000 (3.6) $\left( \dfrac{1}{.1} \right)^{1/.\overline{1}}$ Jonathan Frank, 3/21Rye, NY 3486784401 (3.6) $(.\overline{1})^{-11+1}$ Jonathan Frank, 3/21Rye, NY 10000000000 (3.4) $\left( \dfrac{1}{.1} \right)^{1/.1}$ Jonathan Frank, 3/21Rye, NY 31381059609 (3.4) $\left( \dfrac{1}{.\overline{1}} \right)^{11}$ Jonathan Frank, 3/21Rye, NY hundred billion (3.2) $\left( \dfrac{1}{.1} \right)^{11}$ Jonathan Frank, 3/21Rye, NY 282429536481 (3.6) $(.\overline{1})^{-11-1}$ Jonathan Frank, 3/21Rye, NY 285311670611 (3.0) $11^{11}$ Jonathan Frank, 3/21Rye, NY trillion (3.4) $.1^{-11-1}$ Jonathan Frank, 3/21Rye, NY ten trillion (4.6) $.1^{\log{(1\%)}-11}$ Jonathan Frank, 3/21Rye, NY hundred trillion (4.6) $.1^{\log{(1\pm)}-11}$ Jonathan Frank, 3/21Rye, NY quadrillion (3.6) $\sqrt[.1 + .1]{ \dfrac{1}{1 \pmf}}$ Jonathan Frank, 3/21Rye, NY hundred quintillion (3.4) $\sqrt[.1]{ \dfrac{1}{1 \%}} \times 1$ Jonathan Frank, 3/21Rye, NY ten sextillion (3.2) $\left( \dfrac{1}{1\%} \right)^{11}$ Jonathan Frank, 3/21Rye, NY septillion (3.4) $(1 \%)^{-11-1}$ Jonathan Frank, 3/21Rye, NY ten septillion (3.8) $\sqrt{\sqrt{ \left( \dfrac{1}{.1} \right)^{1/(1\%)}}}$ Jonathan Frank, 3/21Rye, NY nonillion (3.2) $(1 \pm)^{1-11}$ Jonathan Frank, 3/21Rye, NY decillion (3.2) $\left( \dfrac{1}{1 \pmf} \right)^{11}$ Jonathan Frank, 3/21Rye, NY undecillion (3.4) $(1 \pm)^{-11-1}$ Jonathan Frank, 3/21Rye, NY hundred tredecillion (3.4) $\left( \dfrac{1}{1\%\%} \right)^{11}$ Jonathan Frank, 3/21Rye, NY hundred quinquadecillion (3.6) $\sqrt{ \left( \dfrac{1}{.1} \right)^{1/(1\%)}}$ Jonathan Frank, 3/21Rye, NY ten septendecillion (3.4) $\left( \dfrac{1}{1\% \pmf} \right)^{11}$ Jonathan Frank, 3/21Rye, NY unvigintillion (3.4) $\left( \dfrac{1}{1 \pmmf} \right)^{11}$ Jonathan Frank, 3/21Rye, NY googol (2.4) $\left( \dfrac{1}{.1} \right)^{1/(1\%)}$ Paolo Pellegrini, 3/09Martina Franca, Italy googolplex (3.8) $\left( \dfrac{1}{.1} \right) ^{\sqrt[-1\%]{.1}}$ Ralph Jeffords, 4/09Centreville, VA

Page 1 (1-400), Page 2 (401+).