\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\antilog} {antilog} \DeclareMathOperator {\sech} {sech} \DeclareMathOperator {\csch} {csch} \DeclareMathOperator {\arsinh} {arsinh} \DeclareMathOperator {\arcosh} {arcosh} \)
This problem was proposed by Integermaniac master Ralph Jeffords. Create each of the positive integers using four copies of 9, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.
Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).
801 (2.6) $\dfrac{9}{.\overline{9}\%} - 99$ Steve Wilson, 5/10 Raytown, MO |
802 (4.4) $\dfrac{((\sqrt{9})!)!}{.9} + \sqrt{9} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
803 (3.8) $\dfrac{(9 - \sqrt{9})!}{.9} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
804 (3.8) $((\sqrt{9})!)! + 9 \times 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
805 (4.6) $\dfrac{((\sqrt{9})!)!}{.9} + (\sqrt{9})! - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
806 (4.0) $\dfrac{(9 - \sqrt{9})!}{.9} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
807 (4.0) $((\sqrt{9})!)! + 9 \times 9 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
808 (4.2) $\dfrac{((\sqrt{9})!)!}{.9} + 9 - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
809 (3.0) $\dfrac{9 - .\overline{9}}{.\overline{9}\%} + 9$ Steve Wilson, 4/10 Raytown, MO |
810 (1.0) $(9 \times 9 + 9) \times 9$ Dave Jones, 2/08 Coventry, England |
|
811 (3.8) $((\sqrt{9})!)! + \dfrac{9}{9\%} - 9$ Steve Wilson, 8/23 Lawrence, KS |
812 (4.0) $\dfrac{((\sqrt{9})!)!}{.9} + 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
813 (4.0) $((\sqrt{9})!)! + 99 - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
814 (4.2) $((\sqrt{9})!)! + \dfrac{9}{9\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
815 (4.2) $\dfrac{((\sqrt{9})!)!}{.9} + 9 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
816 (3.8) $((\sqrt{9})!)! + 99 - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
817 (4.0) $((\sqrt{9})!)! + \dfrac{9}{9\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
818 (3.8) $\dfrac{((\sqrt{9})!)!}{.9} + 9 + 9$ Steve Wilson, 8/23 Lawrence, KS |
819 (2.2) $9 \times \left( \dfrac{9}{9\%} - 9 \right)$ Dave Jones, 7/08 Coventry, England |
820 (3.6) $(9 - \sqrt{9})! + \dfrac{9}{9\%}$ Steve Wilson, 8/23 Lawrence, KS |
|
821 (4.2) $((\sqrt{9})!)! + \dfrac{9 + 9\%}{9\%}$ Steve Wilson, 8/23 Lawrence, KS |
822 (3.8) $((\sqrt{9})!)! + 99 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
823 (4.0) $((\sqrt{9})!)! + \dfrac{9}{9\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
824 (4.6) $\dfrac{((\sqrt{9})!)!}{.9} \times (.\overline{9} + (\sqrt{9})\%)$ Steve Wilson, 5/25 Lawrence, KS |
825 (4.0) $((\sqrt{9})!)! + 99 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
826 (4.2) $((\sqrt{9})!)! + \dfrac{9}{9\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
827 (4.0) $\dfrac{((\sqrt{9})!)!}{.9} + 9 \times \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
828 (3.6) $((\sqrt{9})!)! + 99 + 9$ Steve Wilson, 8/23 Lawrence, KS |
829 (3.4) $9^{\sqrt{9}} + \dfrac{9}{9\%}$ Steve Wilson, 8/23 Lawrence, KS |
830 (3.8) $((\sqrt{9})!)! + \dfrac{99}{.9}$ Steve Wilson, 8/23 Lawrence, KS |
|
831 (4.4) $\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} - 9$ Steve Wilson, 5/25 Lawrence, KS |
832 (5.8) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 - \dfrac{\sqrt{9}}{(\sqrt{9})!\%}$ Steve Wilson, 5/25 Lawrence, KS |
833 (5.4) $\antilog\sqrt{9} - 9 + \sqrt{9}$ $\phantom8 - \coth\ln\coth\arcosh 9$ Steve Wilson, 5/25 Lawrence, KS |
834 (4.8) $\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} - (\sqrt{9})!$ Steve Wilson, 5/25 Lawrence, KS |
835 (5.4) $9!! - \dfrac{99}{.9}$ Steve Wilson, 5/25 Lawrence, KS |
836 (4.6) $\dfrac{((\sqrt{9})!)!}{.9} + (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
837 (3.4) $(99 - (\sqrt{9})!) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
838 (5.4) $\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$ $\phantom8 - 9 + .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
839 (4.8) $\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} - .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
840 (4.4) $(9 - \sqrt{9})! + \dfrac{((\sqrt{9})!)!}{(\sqrt{9})!}$ Steve Wilson, 8/23 Lawrence, KS |
|
841 (4.8) $\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} + .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
842 (5.4) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 - \dfrac{9}{\csch\ln 9}$ Steve Wilson, 5/25 Lawrence, KS |
843 (4.6) $\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
844 (5.4) $\antilog\sqrt{9} - (\sqrt{9})!$ $\phantom8 + \dfrac{9}{(\sqrt{9})!\%}$ Steve Wilson, 5/25 Lawrence, KS |
845 (5.0) $\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$ $\phantom8 - \dfrac99$ Steve Wilson, 5/25 Lawrence, KS |
846 (3.6) $\left(\dfrac{9}{9\%} - (\sqrt{9})!\right) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
847 (5.0) $\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$ $\phantom8 + \dfrac99$ Steve Wilson, 5/25 Lawrence, KS |
848 (5.4) $\antilog\sqrt{9} + \sqrt{9 \times 9}$ $\phantom8 - \coth\ln\coth\arcosh 9$ Steve Wilson, 5/25 Lawrence, KS |
849 (4.2) $9^{\sqrt{9}} + \dfrac{((\sqrt{9})!)!}{(\sqrt{9})!}$ Steve Wilson, 5/25 Lawrence, KS |
850 (4.4) $((\sqrt{9})!)! + \dfrac{\sqrt{9} + .9}{(\sqrt{9})\%}$ Steve Wilson, 8/23 Lawrence, KS |
|
851 (5.4) $\antilog\sqrt{9} + 9 + \sqrt{9}$ $\phantom8 - \coth\ln\coth\arcosh 9$ Steve Wilson, 5/25 Lawrence, KS |
852 (5.2) $\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$ $\phantom8 + 9 - \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
853 (5.2) $\antilog\sqrt{9} + \sqrt{9} + \dfrac{9}{(\sqrt{9})!\%}$ Steve Wilson, 5/25 Lawrence, KS |
854 (4.2) $\dfrac{((\sqrt{9})!)!}{.9} + 9 \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
855 (4.8) $\cosh(\sqrt{9} \times \arcosh(9 - \sqrt{9}))$ $\phantom8 + 9$ Steve Wilson, 5/25 Lawrence, KS |
856 (5.2) $\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$ $\phantom8 + \dfrac{9}{.9}$ Steve Wilson, 5/25 Lawrence, KS |
857 (5.2) $\antilog\sqrt{9} + 9 + 9$ $\phantom8 - \coth\ln\coth\arcosh 9$ Steve Wilson, 5/25 Lawrence, KS |
858 (5.2) $\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$ $\phantom8 + 9 + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
859 (5.0) $\antilog\sqrt{9} + \dfrac{9}{(\sqrt{9})!\%} + 9$ Steve Wilson, 5/25 Lawrence, KS |
860 (4.2) $\dfrac{((\sqrt{9})!)! + 9 \times (\sqrt{9})!}{.9}$ Steve Wilson, 8/23 Lawrence, KS |
|
861 (4.0) $\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} - 9$ Steve Wilson, 5/25 Lawrence, KS |
862 (5.8) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 - \dfrac{(\sqrt{9})!}{\sqrt{9\%}}$ Steve Wilson, 5/25 Lawrence, KS |
863 (5.6) $\sinh(\sqrt{9} \times \arsinh(9 - \sqrt{9}))$ $\phantom8 + \coth\ln\sqrt{.9}$ Steve Wilson, 5/25 Lawrence, KS |
864 (3.2) $(99 - \sqrt{9}) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
865 (5.6) $\cosh(\sqrt{9} \times \arcosh(9 - \sqrt{9})$ $\phantom8 - \coth\ln\sqrt{.9}$ Steve Wilson, 5/25 Lawrence, KS |
866 (5.4) $\antilog\sqrt{9} + 9 \times \sqrt{9}$ $\phantom8 - \coth\ln\coth\arcosh 9$ Steve Wilson, 5/25 Lawrence, KS |
867 (4.2) $\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} - \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
868 (5.8) $(\coth\ln 9 + (\sqrt{9})!\%)$ $\phantom8 \times \dfrac{((\sqrt{9})!)!}{.9}$ Steve Wilson, 5/25 Lawrence, KS |
869 (4.4) $\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} - .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
870 (4.0) $(9 - \sqrt{9})! + \dfrac{9}{(\sqrt{9})!\%}$ Steve Wilson, 8/23 Lawrence, KS |
|
871 (4.4) $\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} + .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
872 (5.2) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 - \dfrac{9}{.9}$ Steve Wilson, 5/25 Lawrence, KS |
873 (3.4) $\left(\dfrac{9}{9\%} - \sqrt{9}\right) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
874 (5.4) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 - 9 + .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
875 (5.8) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 - (\sqrt{9})! - .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
876 (4.8) $\dfrac{9}{.\overline{9}\%} + \dfrac{((\sqrt{9})!)!\%}{(\sqrt{9\%})}$ Steve Wilson, 5/25 Lawrence, KS |
877 (5.8) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 - (\sqrt{9})! + .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
878 (5.6) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 - \sqrt{9} - .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
879 (4.0) $\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} + 9$ Steve Wilson, 5/25 Lawrence, KS |
880 (4.8) $\dfrac{.9 - (.\overline{9} + .\overline{9})\%}{.\overline{9}\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|
881 (3.8) $\dfrac{((\sqrt{9})!)!}{.9} + 9 \times 9$ Steve Wilson, 8/23 Lawrence, KS |
882 (2.0) $9 \times 99 - 9$ Dave Jones, 7/08 Coventry, England |
883 (5.0) $\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$ $\phantom8 + \dfrac99$ Steve Wilson, 5/25 Lawrence, KS |
884 (4.8) $\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
885 (3.4) $9 \times 99 - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
886 (5.4) $\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$ $\phantom8 + \dfrac{9}{\csch\ln 9}$ Steve Wilson, 5/25 Lawrence, KS |
887 (4.6) $\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
888 (3.2) $9 \times 99 - \sqrt{9}$ Rabeh Ghadiri, 8/08 Overland Park, KS |
889 (4.8) $\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
890 (2.4) $\dfrac{9 \times 9 - .9}{9\%}$ Steve Wilson, 5/10 Raytown, MO |
|
891 (2.2) $9 \times \dfrac{9}{9\%} - 9$ Dave Jones, 7/08 Coventry, England |
892 (2.4) $99 \times 9 + .\overline{9}$ Steve Wilson, 5/10 Raytown, MO |
893 (4.6) $\dfrac{9 - .\overline{9}\%}{.\overline{9}\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
894 (3.2) $99 \times 9 + \sqrt{9}$ Leif Muhammad, 3/14 Kansas City, MO |
895 (4.4) $\dfrac{9}{.\overline{9}\%} - (\sqrt{9})! + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
896 (4.4) $\dfrac{9 - .\overline{9}\%}{.\overline{9}\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
897 (3.4) $9 \times 99 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
898 (3.4) $\dfrac{9}{.\overline{9}\%} - .\overline{9} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
899 (2.4) $\dfrac{9 \times 9 - 9\%}{9\%}$ Dave Jones, 8/08 Coventry, England |
900 (2.0) $9 \times 99 + 9$ Dave Jones, 8/08 Coventry, England |
|
901 (2.4) $\dfrac{9}{.9\%} - 99$ Dave Jones, 8/08 Coventry, England |
902 (4.2) $\dfrac{9}{.\overline{9}\%} + \sqrt{9} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
903 (3.4) $9 \times \dfrac{9}{9\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
904 (4.2) $\dfrac{9}{.\overline{9}\%} + \sqrt{9} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
905 (4.4) $\dfrac{9}{.\overline{9}\%} + (\sqrt{9})! - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
906 (3.6) $9 \times \dfrac{9}{9\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
907 (4.6) $\dfrac{9 + .\overline{9}\%}{.\overline{9}\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
908 (3.0) $\dfrac{9}{.\overline{9}\%} + 9 - .\overline{9}$ Steve Wilson, 5/10 Raytown, MO |
909 (2.2) $9 \times \dfrac{9}{9\%} + 9$ Dave Jones, 8/08 Coventry, England |
910 (2.4) $\dfrac{9 \times 9 + .9}{9\%}$ Dave Jones, 8/08 Coventry, England |
|
911 (4.8) $\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
912 (3.8) $\dfrac{9}{.\overline{9}\%} + 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
913 (4.6) $\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
914 (5.8) $\cot\arctan((\cot\arctan 9)\%)$ $\phantom8 + 9 + (\sqrt{9})! - .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
915 (4.0) $\dfrac{9}{.\overline{9}\%} + 9 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
916 (4.8) $\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
917 (5.6) $\sinh(\sqrt{9} \times \arsinh\sqrt{9})$ $\phantom8 \times \dfrac{((\sqrt{9})!)!}{.9}$ Steve Wilson, 5/25 Lawrence, KS |
918 (2.6) $\dfrac{9}{.\overline{9}\%} + 9 + 9$ Steve Wilson, 6/10 Raytown, MO |
919 (2.4) $\dfrac{9}{.9\%} - 9 \times 9$ Dave Jones, 9/08 Coventry, England |
920 (3.8) $((\sqrt{9})!)! + \dfrac{9 + 9}{9\%}$ Steve Wilson, 8/23 Lawrence, KS |
|
921 (4.0) $\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} - 9$ Steve Wilson, 5/25 Lawrence, KS |
922 (4.6) $\antilog\sqrt{9} - 9 \times 9 + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
923 (5.6) $\coth\ln\coth\arcosh((\sqrt{9})!)$ $\phantom8 \times (9.\overline{9} + \sqrt{9})$ Steve Wilson, 5/25 Lawrence, KS |
924 (4.4) $\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} - (\sqrt{9})!$ Steve Wilson, 5/25 Lawrence, KS |
925 (4.8) $\antilog\sqrt{9} - 9 \times 9 + (\sqrt{9})!$ Steve Wilson, 5/25 Lawrence, KS |
926 (5.4) $9!! - 9.\overline{9} - 9$ Steve Wilson, 5/25 Lawrence, KS |
927 (3.4) $\left(\dfrac{9}{9\%} + \sqrt{9}\right) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
928 (4.4) $\antilog\sqrt{9} - 9 \times 9 + 9$ Steve Wilson, 5/25 Lawrence, KS |
929 (5.8) $9!! - \dfrac{9}{.9} - (\sqrt{9})!$ Steve Wilson, 5/25 Lawrence, KS |
930 (4.0) $\dfrac{9}{.\overline{9}\%} - \dfrac{9}{\sqrt{9\%}}$ Steve Wilson, 8/23 Lawrence, KS |
|
931 (4.4) $\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} + .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
932 (5.6) $9!! - \dfrac{9}{.9} - \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
933 (4.2) $\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
934 (5.2) $9!! - \dfrac{99}{9}$ Steve Wilson, 5/25 Lawrence, KS |
935 (5.2) $9!! - 9 - \dfrac{9}{9}$ Steve Wilson, 5/25 Lawrence, KS |
936 (4.4) $\dfrac{9}{.\overline{9}\%} + (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
937 (5.2) $9!! - 9 + \dfrac{9}{9}$ Steve Wilson, 5/25 Lawrence, KS |
938 (5.6) $9!! - \dfrac{9}{.9} + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
939 (4.0) $\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} + 9$ Steve Wilson, 5/25 Lawrence, KS |
940 (3.8) $\dfrac{9 - 9\% \times (\sqrt{9})!}{9\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|
941 (4.4) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - 9$ Steve Wilson, 8/23 Lawrence, KS |
942 (5.4) $9!! + 9 - 9 - \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
943 (5.2) $9!! - \dfrac{9 + 9}{9}$ Steve Wilson, 5/25 Lawrence, KS |
944 (4.8) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
945 (3.4) $(99 + (\sqrt{9})!) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
946 (3.6) $\dfrac{9}{9\pmf} - 9 \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
947 (4.6) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
948 (5.4) $9!! + 9 - 9 + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
949 (4.8) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
950 (4.2) $\dfrac{9 - \sqrt{9} - \sqrt{9\%}}{(\sqrt{9})!\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|
951 (4.8) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
952 (5.6) $9!! + \dfrac{9}{.9} - \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
953 (4.6) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
954 (3.6) $\left(\dfrac{9}{9\%} + (\sqrt{9})!\right) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
955 (5.2) $9!! + 9 + \dfrac{9}{9}$ Steve Wilson, 5/25 Lawrence, KS |
956 (4.8) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
957 (4.6) $\dfrac{.9 + (\sqrt{9})!\%}{.\overline{9}\pmf} - \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
958 (5.6) $9!! + \dfrac{9}{.9} + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
959 (4.4) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + 9$ Steve Wilson, 8/23 Lawrence, KS |
960 (4.0) $\dfrac{9.9 - \sqrt{9\%}}{.\overline{9}\%}$ Steve Wilson, 8/23 Lawrence, KS |
|
961 (4.8) $\antilog\sqrt{9} - \dfrac{9}{\sqrt{9\%}} - 9$ Steve Wilson, 5/25 Lawrence, KS |
962 (5.6) $\antilog\sqrt{9}$ $\phantom8 - \dfrac{9 - \ln\sqrt{\exp(.9)}}{\csch\ln 9}$ Steve Wilson, 5/25 Lawrence, KS |
963 (4.6) $\dfrac{.9 + (\sqrt{9})!\%}{.\overline{9}\pmf} + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
964 (4.0) $\dfrac{9}{9\pmf} - (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
965 (5.4) $9!! + \dfrac{9 + 9}{.9}$ Steve Wilson, 5/25 Lawrence, KS |
966 (4.6) $\dfrac{9 - \csch\ln 9}{9\pmf} - 9$ Steve Wilson, 5/25 Lawrence, KS |
967 (5.4) $\antilog\sqrt{9} + \sqrt{9}$ $\phantom8 - (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 5/25 Lawrence, KS |
968 (5.6) $\antilog\sqrt{9}$ $\phantom8 - \dfrac{.9 + (\sqrt{9})!\%}{(\sqrt{9})\%}$ Steve Wilson, 5/25 Lawrence, KS |
969 (4.4) $\dfrac{.9 + (\sqrt{9})!\%}{.\overline{9}\pmf} + 9$ Steve Wilson, 5/25 Lawrence, KS |
970 (3.6) $\dfrac{9 - 9\% \times \sqrt{9}}{9\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|
971 (5.4) $\antilog\sqrt{9} - \dfrac{9}{.9}$ $\phantom8 + \coth\ln\sqrt{.9}$ Steve Wilson, 5/25 Lawrence, KS |
972 (2.0) $(99 + 9) \times 9$ Dave Jones, 9/08 Coventry, England |
973 (3.4) $\dfrac{9}{9\pmf} - 9 \times \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
974 (5.4) $\antilog\sqrt{9} - .\overline{9}$ $\phantom8 - \dfrac{\csch\ln 9}{9\pmf}$ Steve Wilson, 5/25 Lawrence, KS |
975 (4.8) $\dfrac{9}{9\pmf} - \dfrac{\csch\ln 9}{9\pmf}$ Steve Wilson, 5/25 Lawrence, KS |
976 (4.8) $\antilog\sqrt{9} + \sqrt{9}$ $\phantom8 - 9 \times \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
977 (5.4) $\antilog\sqrt{9} - \dfrac{(\sqrt{9})!}{\sqrt{9\%}} - \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
978 (4.8) $\dfrac{9 - \csch\ln 9}{9\pmf} + \sqrt{9}$ Steve Wilson, 5/25 Lawrence, KS |
979 (4.8) $\antilog\sqrt{9} - \dfrac{9}{\sqrt{9\%}} + 9$ Steve Wilson, 5/25 Lawrence, KS |
980 (2.6) $\dfrac{9 - (9 + 9)\%}{.9\%}$ Steve Wilson, 6/10 Raytown, MO |
|
981 (2.2) $9 \times \left( \dfrac{9}{9\%} + 9 \right)$ Dave Jones, 9/08 Coventry, England |
982 (2.4) $\dfrac{9}{.9\%} - 9 - 9$ Dave Jones, 9/08 Coventry, England |
983 (4.8) $\antilog\sqrt{9} - 9 - 9 + .\overline{9}$ Steve Wilson, 5/25 Lawrence, KS |
984 (3.8) $\dfrac{9 - 9\%}{9\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
985 (3.6) $\dfrac{9}{9\pmf} - 9 - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
986 (5.4) $\antilog\sqrt{9} - 9 - \dfrac{\sqrt{9\%}}{(\sqrt{9})!\%}$ Steve Wilson, 5/25 Lawrence, KS |
987 (3.6) $\dfrac{9 - 9\%}{9\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
988 (3.4) $\dfrac{9}{9\pmf} - 9 - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
989 (2.6) $\dfrac{9 - 9.9\%}{.9\%}$ Dave Jones, 11/08 Coventry, England |
990 (2.0) $999 - 9$ Dave Jones, 10/08 Coventry, England |
|
991 (2.8) $\dfrac{9}{.9\%} - 9 \times .\overline{9}$ Steve Wilson, 2/09 Raytown, MO |
992 (2.8) $\dfrac{9}{.9\%} - 9 + .\overline{9}$ Steve Wilson, 2/09 Raytown, MO |
993 (3.4) $999 - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
994 (3.4) $\dfrac{9}{9\pmf} - 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
995 (4.0) $\dfrac{9}{9\pmf} - (\sqrt{9})! + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
996 (3.2) $999 - \sqrt{9}$ Parker Moss, 9/12 Overland Park, KS |
997 (3.4) $\dfrac{9}{9\pmf} - \dfrac{9}{\sqrt{9}}$ Steve Wilson, 8/23 Lawrence, KS |
998 (2.4) $999 - .\overline{9}$ Steve Wilson, 6/10 Raytown, MO |
999 (2.4) $\dfrac{9}{.9\%} - \dfrac99$ Steve Wilson, 2/09 Raytown, MO |
1000 (2.2) $\dfrac{99}{9.9\%}$ Dave Jones, 10/08 Coventry, England |
|
1001 (2.4) $\dfrac{9}{.9\%} + \dfrac99$ Dave Jones, 10/08 Coventry, England |
1002 (3.0) $\dfrac{9 + (.9 + .9)\%}{.9\%}$ Steve Wilson, 6/10 Raytown, MO |
1003 (3.4) $\dfrac{9}{9\pmf} + \dfrac{9}{\sqrt{9}}$ Steve Wilson, 8/23 Lawrence, KS |
1004 (3.8) $\dfrac{9 + 9\%}{9\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1005 (3.4) $999 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1006 (3.4) $\dfrac{9}{9\pmf} + 9 - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1007 (3.6) $\dfrac{9 + 9\%}{9\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1008 (2.0) $999 + 9$ Jeremy Miller, 11/07 Olathe, KS |
1009 (2.8) $\dfrac{9 + 9 \times .9\%}{.9\%}$ Steve Wilson, 6/10 Raytown, MO |
1010 (2.6) $\dfrac{9}{.9\%} + 9.\overline{9}$ Steve Wilson, 2/09 Raytown, MO |
|
1011 (2.6) $\dfrac{9 + 9.9\%}{.9\%}$ Dave Jones, 10/08 Coventry, England |
1012 (3.4) $\dfrac{9}{9\pmf} + 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1013 (3.6) $\dfrac{9 + 9\%}{9\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1015 (3.6) $\dfrac{9}{9\pmf} + 9 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1016 (3.8) $\dfrac{9 + 9\%}{9\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1018 (2.4) $\dfrac{9}{.9\%} + 9 + 9$ Dave Jones, 10/08 Coventry, England |
1019 (2.6) $\dfrac{9 + 9\%}{.9\%} + 9$ Dave Jones, 11/08 Coventry, England |
1020 (2.6) $\dfrac{9 + (9+9)\%}{.9\%}$ Dave Jones, 11/08 Coventry, England |
|||
1027 (3.4) $\dfrac{9}{9\pmf} + 9 \times \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1030 (3.6) $\dfrac{9 + 9\% \times \sqrt{9}}{9\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
1036 (4.0) $\dfrac{9}{9\pmf} + (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1050 (4.2) $\dfrac{9 - \sqrt{9} + \sqrt{9\%}}{(\sqrt{9})!\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1054 (3.6) $\dfrac{9}{9\pmf} + 9 \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1060 (3.8) $\dfrac{9 + 9\% \times (\sqrt{9})!}{9\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
1062 (4.8) $9 \times (99 - \coth\ln\sqrt{.9})$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1080 (2.8) $\dfrac{9.9 + .9}{.\overline{9}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1081 (2.4) $\dfrac{9}{.9\%} + 9 \times 9$ Dave Jones, 11/08 Coventry, England |
1089 (4.8) $99 \times (9 - \log(.\overline{9}\%))$ Steve Wilson, 8/23 Lawrence, KS |
1090 (2.4) $\dfrac{99 - .9}{9\%}$ Dave Jones, 11/08 Coventry, England |
||||||||
1091 (2.2) $\dfrac{99}{9\%} - 9$ Amy Koger, 9/08 Fort Scott, KS |
1094 (3.6) $\dfrac{99}{9\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1097 (3.4) $\dfrac{99}{9\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1099 (2.4) $\dfrac{9}{.9\%} + 99$ Dave Jones, 12/08 Coventry, England |
1100 (2.6) $\dfrac{99}{9\%} \times .\overline{9}$ Steve Wilson, 2/09 Raytown, MO |
||||||
1101 (2.4) $\dfrac{99 + 9\%}{9\%}$ Dave Jones, 12/08 Coventry, England |
1103 (3.4) $\dfrac{99}{9\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1106 (3.6) $\dfrac{99}{9\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1109 (2.2) $\dfrac{99}{9\%} + 9$ Amy Koger, 9/08 Fort Scott, KS |
1110 (2.2) $\dfrac{999}{.9}$ Dave Jones, 12/08 Coventry, England |
||||||
1111 (2.8) $\dfrac{9 - 9\%\%}{9\% \times 9\%}$ Steve Wilson, 10/11 Raytown, MO |
1116 (3.0) $\dfrac{.9}{(9 - .\overline{9})\%\%} - 9$ Steve Wilson, 10/11 Raytown, MO |
1119 (4.0) $\dfrac{9}{(9 - .\overline{9})\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
||||||||
1122 (3.8) $\dfrac{9}{(9 - .\overline{9})\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1124 (3.4) $\dfrac{.9}{(9 - .\overline{9})\%\%} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1125 (2.6) $\dfrac{9}{\left(.9 - \dfrac{.9}{9}\right)\%}$ Steve Wilson, 8/23 Lawrence, KS |
1126 (3.4) $\dfrac{.9}{(9 - .\overline{9})\%\%} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1128 (3.8) $\dfrac{9}{(9 - .\overline{9})\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
||||||
1131 (4.0) $\dfrac{9}{(9 - .\overline{9})\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1134 (3.0) $\dfrac{.9}{(9 - .\overline{9})\%\%} + 9$ Steve Wilson, 10/11 Raytown, MO |
|||||||||
1188 (3.2) $99 \times (9 + \sqrt{9})$ Steve Wilson, 8/23 Lawrence, KS |
1190 (4.8) $\dfrac{.9 + \sqrt{9\%} - .\overline{9}\%}{.\overline{9}\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
1191 (3.8) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - 9$ Steve Wilson, 8/23 Lawrence, KS |
1194 (4.2) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1197 (4.0) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1199 (4.2) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1200 (2.2) $\dfrac{99 + 9}{9\%}$ Dave Jones, 12/08 Coventry, England |
Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).