\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\antilog} {antilog} \DeclareMathOperator {\sech} {sech} \DeclareMathOperator {\csch} {csch} \DeclareMathOperator {\arsinh} {arsinh} \DeclareMathOperator {\arcosh} {arcosh} \)

Integermania!

Four Nines

This problem was proposed by Integermaniac master Ralph Jeffords. Create each of the positive integers using four copies of 9, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here!  This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).

  801 (2.6)
$\dfrac{9}{.\overline{9}\%} - 99$
Steve Wilson, 5/10
Raytown, MO
802 (4.4)
$\dfrac{((\sqrt{9})!)!}{.9} + \sqrt{9} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
803 (3.8)
$\dfrac{(9 - \sqrt{9})!}{.9} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
804 (3.8)
$((\sqrt{9})!)! + 9 \times 9 + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
805 (4.6)
$\dfrac{((\sqrt{9})!)!}{.9} + (\sqrt{9})! - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
806 (4.0)
$\dfrac{(9 - \sqrt{9})!}{.9} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
807 (4.0)
$((\sqrt{9})!)! + 9 \times 9 + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
808 (4.2)
$\dfrac{((\sqrt{9})!)!}{.9} + 9 - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
809 (3.0)
$\dfrac{9 - .\overline{9}}{.\overline{9}\%} + 9$
Steve Wilson, 4/10
Raytown, MO
810 (1.0)
$(9 \times 9 + 9) \times 9$
Dave Jones, 2/08
Coventry, England
  811 (3.8)
$((\sqrt{9})!)! + \dfrac{9}{9\%} - 9$
Steve Wilson, 8/23
Lawrence, KS
812 (4.0)
$\dfrac{((\sqrt{9})!)!}{.9} + 9 + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
813 (4.0)
$((\sqrt{9})!)! + 99 - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
814 (4.2)
$((\sqrt{9})!)! + \dfrac{9}{9\%} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
815 (4.2)
$\dfrac{((\sqrt{9})!)!}{.9} + 9 + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
816 (3.8)
$((\sqrt{9})!)! + 99 - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
817 (4.0)
$((\sqrt{9})!)! + \dfrac{9}{9\%} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
818 (3.8)
$\dfrac{((\sqrt{9})!)!}{.9} + 9 + 9$
Steve Wilson, 8/23
Lawrence, KS
819 (2.2)
$9 \times \left( \dfrac{9}{9\%} - 9 \right)$
Dave Jones, 7/08
Coventry, England
820 (3.6)
$(9 - \sqrt{9})! + \dfrac{9}{9\%}$
Steve Wilson, 8/23
Lawrence, KS
  821 (4.2)
$((\sqrt{9})!)! + \dfrac{9 + 9\%}{9\%}$
Steve Wilson, 8/23
Lawrence, KS
822 (3.8)
$((\sqrt{9})!)! + 99 + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
823 (4.0)
$((\sqrt{9})!)! + \dfrac{9}{9\%} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
824 (4.6)
$\dfrac{((\sqrt{9})!)!}{.9} \times (.\overline{9} + (\sqrt{9})\%)$
Steve Wilson, 5/25
Lawrence, KS
825 (4.0)
$((\sqrt{9})!)! + 99 + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
826 (4.2)
$((\sqrt{9})!)! + \dfrac{9}{9\%} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
827 (4.0)
$\dfrac{((\sqrt{9})!)!}{.9} + 9 \times \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
828 (3.6)
$((\sqrt{9})!)! + 99 + 9$
Steve Wilson, 8/23
Lawrence, KS
829 (3.4)
$9^{\sqrt{9}} + \dfrac{9}{9\%}$
Steve Wilson, 8/23
Lawrence, KS
830 (3.8)
$((\sqrt{9})!)! + \dfrac{99}{.9}$
Steve Wilson, 8/23
Lawrence, KS
  831 (4.4)
$\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} - 9$
Steve Wilson, 5/25
Lawrence, KS
832 (5.8)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 - \dfrac{\sqrt{9}}{(\sqrt{9})!\%}$

Steve Wilson, 5/25
Lawrence, KS
833 (5.4)
$\antilog\sqrt{9} - 9 + \sqrt{9}$
$\phantom8 - \coth\ln\coth\arcosh 9$

Steve Wilson, 5/25
Lawrence, KS
834 (4.8)
$\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} - (\sqrt{9})!$
Steve Wilson, 5/25
Lawrence, KS
835 (5.4)
$9!! - \dfrac{99}{.9}$
Steve Wilson, 5/25
Lawrence, KS
836 (4.6)
$\dfrac{((\sqrt{9})!)!}{.9} + (\sqrt{9})! \times (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
837 (3.4)
$(99 - (\sqrt{9})!) \times 9$
Steve Wilson, 8/23
Lawrence, KS
838 (5.4)
$\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$
$\phantom8 - 9 + .\overline{9}$

Steve Wilson, 5/25
Lawrence, KS
839 (4.8)
$\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} - .\overline{9}$
Steve Wilson, 5/25
Lawrence, KS
840 (4.4)
$(9 - \sqrt{9})! + \dfrac{((\sqrt{9})!)!}{(\sqrt{9})!}$
Steve Wilson, 8/23
Lawrence, KS
  841 (4.8)
$\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} + .\overline{9}$
Steve Wilson, 5/25
Lawrence, KS
842 (5.4)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 - \dfrac{9}{\csch\ln 9}$

Steve Wilson, 5/25
Lawrence, KS
843 (4.6)
$\dfrac{.9 - (\sqrt{9})!\%}{.\overline{9}\pmf} + \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
844 (5.4)
$\antilog\sqrt{9} - (\sqrt{9})!$
$\phantom8 + \dfrac{9}{(\sqrt{9})!\%}$

Steve Wilson, 5/25
Lawrence, KS
845 (5.0)
$\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$
$\phantom8 - \dfrac99$

Steve Wilson, 5/25
Lawrence, KS
846 (3.6)
$\left(\dfrac{9}{9\%} - (\sqrt{9})!\right) \times 9$
Steve Wilson, 8/23
Lawrence, KS
847 (5.0)
$\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$
$\phantom8 + \dfrac99$

Steve Wilson, 5/25
Lawrence, KS
848 (5.4)
$\antilog\sqrt{9} + \sqrt{9 \times 9}$
$\phantom8 - \coth\ln\coth\arcosh 9$

Steve Wilson, 5/25
Lawrence, KS
849 (4.2)
$9^{\sqrt{9}} + \dfrac{((\sqrt{9})!)!}{(\sqrt{9})!}$
Steve Wilson, 5/25
Lawrence, KS
850 (4.4)
$((\sqrt{9})!)! + \dfrac{\sqrt{9} + .9}{(\sqrt{9})\%}$
Steve Wilson, 8/23
Lawrence, KS
  851 (5.4)
$\antilog\sqrt{9} + 9 + \sqrt{9}$
$\phantom8 - \coth\ln\coth\arcosh 9$

Steve Wilson, 5/25
Lawrence, KS
852 (5.2)
$\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$
$\phantom8 + 9 - \sqrt{9}$

Steve Wilson, 5/25
Lawrence, KS
853 (5.2)
$\antilog\sqrt{9} + \sqrt{9} + \dfrac{9}{(\sqrt{9})!\%}$
Steve Wilson, 5/25
Lawrence, KS
854 (4.2)
$\dfrac{((\sqrt{9})!)!}{.9} + 9 \times (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
855 (4.8)
$\cosh(\sqrt{9} \times \arcosh(9 - \sqrt{9}))$
$\phantom8 + 9$

Steve Wilson, 5/25
Lawrence, KS
856 (5.2)
$\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$
$\phantom8 + \dfrac{9}{.9}$

Steve Wilson, 5/25
Lawrence, KS
857 (5.2)
$\antilog\sqrt{9} + 9 + 9$
$\phantom8 - \coth\ln\coth\arcosh 9$

Steve Wilson, 5/25
Lawrence, KS
858 (5.2)
$\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$
$\phantom8 + 9 + \sqrt{9}$

Steve Wilson, 5/25
Lawrence, KS
859 (5.0)
$\antilog\sqrt{9} + \dfrac{9}{(\sqrt{9})!\%} + 9$
Steve Wilson, 5/25
Lawrence, KS
860 (4.2)
$\dfrac{((\sqrt{9})!)! + 9 \times (\sqrt{9})!}{.9}$
Steve Wilson, 8/23
Lawrence, KS
  861 (4.0)
$\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} - 9$
Steve Wilson, 5/25
Lawrence, KS
862 (5.8)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 - \dfrac{(\sqrt{9})!}{\sqrt{9\%}}$

Steve Wilson, 5/25
Lawrence, KS
863 (5.6)
$\sinh(\sqrt{9} \times \arsinh(9 - \sqrt{9}))$
$\phantom8 + \coth\ln\sqrt{.9}$

Steve Wilson, 5/25
Lawrence, KS
864 (3.2)
$(99 - \sqrt{9}) \times 9$
Steve Wilson, 8/23
Lawrence, KS
865 (5.6)
$\cosh(\sqrt{9} \times \arcosh(9 - \sqrt{9})$
$\phantom8 - \coth\ln\sqrt{.9}$

Steve Wilson, 5/25
Lawrence, KS
866 (5.4)
$\antilog\sqrt{9} + 9 \times \sqrt{9}$
$\phantom8 - \coth\ln\coth\arcosh 9$

Steve Wilson, 5/25
Lawrence, KS
867 (4.2)
$\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} - \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
868 (5.8)
$(\coth\ln 9 + (\sqrt{9})!\%)$
$\phantom8 \times \dfrac{((\sqrt{9})!)!}{.9}$

Steve Wilson, 5/25
Lawrence, KS
869 (4.4)
$\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} - .\overline{9}$
Steve Wilson, 5/25
Lawrence, KS
870 (4.0)
$(9 - \sqrt{9})! + \dfrac{9}{(\sqrt{9})!\%}$
Steve Wilson, 8/23
Lawrence, KS
  871 (4.4)
$\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} + .\overline{9}$
Steve Wilson, 5/25
Lawrence, KS
872 (5.2)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 - \dfrac{9}{.9}$

Steve Wilson, 5/25
Lawrence, KS
873 (3.4)
$\left(\dfrac{9}{9\%} - \sqrt{9}\right) \times 9$
Steve Wilson, 8/23
Lawrence, KS
874 (5.4)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 - 9 + .\overline{9}$

Steve Wilson, 5/25
Lawrence, KS
875 (5.8)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 - (\sqrt{9})! - .\overline{9}$

Steve Wilson, 5/25
Lawrence, KS
876 (4.8)
$\dfrac{9}{.\overline{9}\%} + \dfrac{((\sqrt{9})!)!\%}{(\sqrt{9\%})}$
Steve Wilson, 5/25
Lawrence, KS
877 (5.8)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 - (\sqrt{9})! + .\overline{9}$

Steve Wilson, 5/25
Lawrence, KS
878 (5.6)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 - \sqrt{9} - .\overline{9}$

Steve Wilson, 5/25
Lawrence, KS
879 (4.0)
$\dfrac{9 - \sqrt{9\%}}{.\overline{9}\%} + 9$
Steve Wilson, 5/25
Lawrence, KS
880 (4.8)
$\dfrac{.9 - (.\overline{9} + .\overline{9})\%}{.\overline{9}\pmf}$
Steve Wilson, 8/23
Lawrence, KS
  881 (3.8)
$\dfrac{((\sqrt{9})!)!}{.9} + 9 \times 9$
Steve Wilson, 8/23
Lawrence, KS
882 (2.0)
$9 \times 99 - 9$
Dave Jones, 7/08
Coventry, England
883 (5.0)
$\sinh(\sqrt{9} \times \arsinh((\sqrt{9})!)$
$\phantom8 + \dfrac99$

Steve Wilson, 5/25
Lawrence, KS
884 (4.8)
$\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
885 (3.4)
$9 \times 99 - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
886 (5.4)
$\cosh(\sqrt{9} \times \arcosh((\sqrt{9})!)$
$\phantom8 + \dfrac{9}{\csch\ln 9}$

Steve Wilson, 5/25
Lawrence, KS
887 (4.6)
$\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
888 (3.2)
$9 \times 99 - \sqrt{9}$
Rabeh Ghadiri, 8/08
Overland Park, KS
889 (4.8)
$\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
890 (2.4)
$\dfrac{9 \times 9 - .9}{9\%}$
Steve Wilson, 5/10
Raytown, MO
  891 (2.2)
$9 \times \dfrac{9}{9\%} - 9$
Dave Jones, 7/08
Coventry, England
892 (2.4)
$99 \times 9 + .\overline{9}$
Steve Wilson, 5/10
Raytown, MO
893 (4.6)
$\dfrac{9 - .\overline{9}\%}{.\overline{9}\%} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
894 (3.2)
$99 \times 9 + \sqrt{9}$
Leif Muhammad, 3/14
Kansas City, MO
895 (4.4)
$\dfrac{9}{.\overline{9}\%} - (\sqrt{9})! + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
896 (4.4)
$\dfrac{9 - .\overline{9}\%}{.\overline{9}\%} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
897 (3.4)
$9 \times 99 + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
898 (3.4)
$\dfrac{9}{.\overline{9}\%} - .\overline{9} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
899 (2.4)
$\dfrac{9 \times 9 - 9\%}{9\%}$
Dave Jones, 8/08
Coventry, England
900 (2.0)
$9 \times 99 + 9$
Dave Jones, 8/08
Coventry, England
  901 (2.4)
$\dfrac{9}{.9\%} - 99$
Dave Jones, 8/08
Coventry, England
902 (4.2)
$\dfrac{9}{.\overline{9}\%} + \sqrt{9} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
903 (3.4)
$9 \times \dfrac{9}{9\%} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
904 (4.2)
$\dfrac{9}{.\overline{9}\%} + \sqrt{9} + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
905 (4.4)
$\dfrac{9}{.\overline{9}\%} + (\sqrt{9})! - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
906 (3.6)
$9 \times \dfrac{9}{9\%} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
907 (4.6)
$\dfrac{9 + .\overline{9}\%}{.\overline{9}\%} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
908 (3.0)
$\dfrac{9}{.\overline{9}\%} + 9 - .\overline{9}$
Steve Wilson, 5/10
Raytown, MO
909 (2.2)
$9 \times \dfrac{9}{9\%} + 9$
Dave Jones, 8/08
Coventry, England
910 (2.4)
$\dfrac{9 \times 9 + .9}{9\%}$
Dave Jones, 8/08
Coventry, England
  911 (4.8)
$\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
912 (3.8)
$\dfrac{9}{.\overline{9}\%} + 9 + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
913 (4.6)
$\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
914 (5.8)
$\cot\arctan((\cot\arctan 9)\%)$
$\phantom8 + 9 + (\sqrt{9})! - .\overline{9}$

Steve Wilson, 5/25
Lawrence, KS
915 (4.0)
$\dfrac{9}{.\overline{9}\%} + 9 + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
916 (4.8)
$\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
917 (5.6)
$\sinh(\sqrt{9} \times \arsinh\sqrt{9})$
$\phantom8 \times \dfrac{((\sqrt{9})!)!}{.9}$

Steve Wilson, 5/25
Lawrence, KS
918 (2.6)
$\dfrac{9}{.\overline{9}\%} + 9 + 9$
Steve Wilson, 6/10
Raytown, MO
919 (2.4)
$\dfrac{9}{.9\%} - 9 \times 9$
Dave Jones, 9/08
Coventry, England
920 (3.8)
$((\sqrt{9})!)! + \dfrac{9 + 9}{9\%}$
Steve Wilson, 8/23
Lawrence, KS
  921 (4.0)
$\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} - 9$
Steve Wilson, 5/25
Lawrence, KS
922 (4.6)
$\antilog\sqrt{9} - 9 \times 9 + \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
923 (5.6)
$\coth\ln\coth\arcosh((\sqrt{9})!)$
$\phantom8 \times (9.\overline{9} + \sqrt{9})$

Steve Wilson, 5/25
Lawrence, KS
924 (4.4)
$\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} - (\sqrt{9})!$
Steve Wilson, 5/25
Lawrence, KS
925 (4.8)
$\antilog\sqrt{9} - 9 \times 9 + (\sqrt{9})!$
Steve Wilson, 5/25
Lawrence, KS
926 (5.4)
$9!! - 9.\overline{9} - 9$
Steve Wilson, 5/25
Lawrence, KS
927 (3.4)
$\left(\dfrac{9}{9\%} + \sqrt{9}\right) \times 9$
Steve Wilson, 8/23
Lawrence, KS
928 (4.4)
$\antilog\sqrt{9} - 9 \times 9 + 9$
Steve Wilson, 5/25
Lawrence, KS
929 (5.8)
$9!! - \dfrac{9}{.9} - (\sqrt{9})!$
Steve Wilson, 5/25
Lawrence, KS
930 (4.0)
$\dfrac{9}{.\overline{9}\%} - \dfrac{9}{\sqrt{9\%}}$
Steve Wilson, 8/23
Lawrence, KS
  931 (4.4)
$\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} + .\overline{9}$
Steve Wilson, 5/25
Lawrence, KS
932 (5.6)
$9!! - \dfrac{9}{.9} - \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
933 (4.2)
$\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} + \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
934 (5.2)
$9!! - \dfrac{99}{9}$
Steve Wilson, 5/25
Lawrence, KS
935 (5.2)
$9!! - 9 - \dfrac{9}{9}$
Steve Wilson, 5/25
Lawrence, KS
936 (4.4)
$\dfrac{9}{.\overline{9}\%} + (\sqrt{9})! \times (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
937 (5.2)
$9!! - 9 + \dfrac{9}{9}$
Steve Wilson, 5/25
Lawrence, KS
938 (5.6)
$9!! - \dfrac{9}{.9} + \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
939 (4.0)
$\dfrac{9 + \sqrt{9\%}}{.\overline{9}\%} + 9$
Steve Wilson, 5/25
Lawrence, KS
940 (3.8)
$\dfrac{9 - 9\% \times (\sqrt{9})!}{9\pmf}$
Steve Wilson, 8/23
Lawrence, KS
  941 (4.4)
$\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - 9$
Steve Wilson, 8/23
Lawrence, KS
942 (5.4)
$9!! + 9 - 9 - \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
943 (5.2)
$9!! - \dfrac{9 + 9}{9}$
Steve Wilson, 5/25
Lawrence, KS
944 (4.8)
$\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
945 (3.4)
$(99 + (\sqrt{9})!) \times 9$
Steve Wilson, 8/23
Lawrence, KS
946 (3.6)
$\dfrac{9}{9\pmf} - 9 \times (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
947 (4.6)
$\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
948 (5.4)
$9!! + 9 - 9 + \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
949 (4.8)
$\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
950 (4.2)
$\dfrac{9 - \sqrt{9} - \sqrt{9\%}}{(\sqrt{9})!\pmf}$
Steve Wilson, 8/23
Lawrence, KS
  951 (4.8)
$\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
952 (5.6)
$9!! + \dfrac{9}{.9} - \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
953 (4.6)
$\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
954 (3.6)
$\left(\dfrac{9}{9\%} + (\sqrt{9})!\right) \times 9$
Steve Wilson, 8/23
Lawrence, KS
955 (5.2)
$9!! + 9 + \dfrac{9}{9}$
Steve Wilson, 5/25
Lawrence, KS
956 (4.8)
$\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
957 (4.6)
$\dfrac{.9 + (\sqrt{9})!\%}{.\overline{9}\pmf} - \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
958 (5.6)
$9!! + \dfrac{9}{.9} + \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
959 (4.4)
$\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + 9$
Steve Wilson, 8/23
Lawrence, KS
960 (4.0)
$\dfrac{9.9 - \sqrt{9\%}}{.\overline{9}\%}$
Steve Wilson, 8/23
Lawrence, KS
  961 (4.8)
$\antilog\sqrt{9} - \dfrac{9}{\sqrt{9\%}} - 9$
Steve Wilson, 5/25
Lawrence, KS
962 (5.6)
$\antilog\sqrt{9}$
$\phantom8 - \dfrac{9 - \ln\sqrt{\exp(.9)}}{\csch\ln 9}$

Steve Wilson, 5/25
Lawrence, KS
963 (4.6)
$\dfrac{.9 + (\sqrt{9})!\%}{.\overline{9}\pmf} + \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
964 (4.0)
$\dfrac{9}{9\pmf} - (\sqrt{9})! \times (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
965 (5.4)
$9!! + \dfrac{9 + 9}{.9}$
Steve Wilson, 5/25
Lawrence, KS
966 (4.6)
$\dfrac{9 - \csch\ln 9}{9\pmf} - 9$
Steve Wilson, 5/25
Lawrence, KS
967 (5.4)
$\antilog\sqrt{9} + \sqrt{9}$
$\phantom8 - (\sqrt{9})! \times (\sqrt{9})!$

Steve Wilson, 5/25
Lawrence, KS
968 (5.6)
$\antilog\sqrt{9}$
$\phantom8 - \dfrac{.9 + (\sqrt{9})!\%}{(\sqrt{9})\%}$

Steve Wilson, 5/25
Lawrence, KS
969 (4.4)
$\dfrac{.9 + (\sqrt{9})!\%}{.\overline{9}\pmf} + 9$
Steve Wilson, 5/25
Lawrence, KS
970 (3.6)
$\dfrac{9 - 9\% \times \sqrt{9}}{9\pmf}$
Steve Wilson, 8/23
Lawrence, KS
  971 (5.4)
$\antilog\sqrt{9} - \dfrac{9}{.9}$
$\phantom8 + \coth\ln\sqrt{.9}$

Steve Wilson, 5/25
Lawrence, KS
972 (2.0)
$(99 + 9) \times 9$
Dave Jones, 9/08
Coventry, England
973 (3.4)
$\dfrac{9}{9\pmf} - 9 \times \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
974 (5.4)
$\antilog\sqrt{9} - .\overline{9}$
$\phantom8 - \dfrac{\csch\ln 9}{9\pmf}$

Steve Wilson, 5/25
Lawrence, KS
975 (4.8)
$\dfrac{9}{9\pmf} - \dfrac{\csch\ln 9}{9\pmf}$
Steve Wilson, 5/25
Lawrence, KS
976 (4.8)
$\antilog\sqrt{9} + \sqrt{9}$
$\phantom8 - 9 \times \sqrt{9}$

Steve Wilson, 5/25
Lawrence, KS
977 (5.4)
$\antilog\sqrt{9} - \dfrac{(\sqrt{9})!}{\sqrt{9\%}} - \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
978 (4.8)
$\dfrac{9 - \csch\ln 9}{9\pmf} + \sqrt{9}$
Steve Wilson, 5/25
Lawrence, KS
979 (4.8)
$\antilog\sqrt{9} - \dfrac{9}{\sqrt{9\%}} + 9$
Steve Wilson, 5/25
Lawrence, KS
980 (2.6)
$\dfrac{9 - (9 + 9)\%}{.9\%}$
Steve Wilson, 6/10
Raytown, MO
  981 (2.2)
$9 \times \left( \dfrac{9}{9\%} + 9 \right)$
Dave Jones, 9/08
Coventry, England
982 (2.4)
$\dfrac{9}{.9\%} - 9 - 9$
Dave Jones, 9/08
Coventry, England
983 (4.8)
$\antilog\sqrt{9} - 9 - 9 + .\overline{9}$
Steve Wilson, 5/25
Lawrence, KS
984 (3.8)
$\dfrac{9 - 9\%}{9\pmf} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
985 (3.6)
$\dfrac{9}{9\pmf} - 9 - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
986 (5.4)
$\antilog\sqrt{9} - 9 - \dfrac{\sqrt{9\%}}{(\sqrt{9})!\%}$
Steve Wilson, 5/25
Lawrence, KS
987 (3.6)
$\dfrac{9 - 9\%}{9\pmf} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
988 (3.4)
$\dfrac{9}{9\pmf} - 9 - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
989 (2.6)
$\dfrac{9 - 9.9\%}{.9\%}$
Dave Jones, 11/08
Coventry, England
990 (2.0)
$999 - 9$
Dave Jones, 10/08
Coventry, England
  991 (2.8)
$\dfrac{9}{.9\%} - 9 \times .\overline{9}$
Steve Wilson, 2/09
Raytown, MO
992 (2.8)
$\dfrac{9}{.9\%} - 9 + .\overline{9}$
Steve Wilson, 2/09
Raytown, MO
993 (3.4)
$999 - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
994 (3.4)
$\dfrac{9}{9\pmf} - 9 + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
995 (4.0)
$\dfrac{9}{9\pmf} - (\sqrt{9})! + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
996 (3.2)
$999 - \sqrt{9}$
Parker Moss, 9/12
Overland Park, KS
997 (3.4)
$\dfrac{9}{9\pmf} - \dfrac{9}{\sqrt{9}}$
Steve Wilson, 8/23
Lawrence, KS
998 (2.4)
$999 - .\overline{9}$
Steve Wilson, 6/10
Raytown, MO
999 (2.4)
$\dfrac{9}{.9\%} - \dfrac99$
Steve Wilson, 2/09
Raytown, MO
1000 (2.2)
$\dfrac{99}{9.9\%}$
Dave Jones, 10/08
Coventry, England
  1001 (2.4)
$\dfrac{9}{.9\%} + \dfrac99$
Dave Jones, 10/08
Coventry, England
1002 (3.0)
$\dfrac{9 + (.9 + .9)\%}{.9\%}$
Steve Wilson, 6/10
Raytown, MO
1003 (3.4)
$\dfrac{9}{9\pmf} + \dfrac{9}{\sqrt{9}}$
Steve Wilson, 8/23
Lawrence, KS
1004 (3.8)
$\dfrac{9 + 9\%}{9\pmf} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
1005 (3.4)
$999 + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
1006 (3.4)
$\dfrac{9}{9\pmf} + 9 - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
1007 (3.6)
$\dfrac{9 + 9\%}{9\pmf} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
1008 (2.0)
$999 + 9$
Jeremy Miller, 11/07
Olathe, KS
1009 (2.8)
$\dfrac{9 + 9 \times .9\%}{.9\%}$
Steve Wilson, 6/10
Raytown, MO
1010 (2.6)
$\dfrac{9}{.9\%} + 9.\overline{9}$
Steve Wilson, 2/09
Raytown, MO
  1011 (2.6)
$\dfrac{9 + 9.9\%}{.9\%}$
Dave Jones, 10/08
Coventry, England
1012 (3.4)
$\dfrac{9}{9\pmf} + 9 + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
1013 (3.6)
$\dfrac{9 + 9\%}{9\pmf} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
  1015 (3.6)
$\dfrac{9}{9\pmf} + 9 + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
1016 (3.8)
$\dfrac{9 + 9\%}{9\pmf} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
  1018 (2.4)
$\dfrac{9}{.9\%} + 9 + 9$
Dave Jones, 10/08
Coventry, England
1019 (2.6)
$\dfrac{9 + 9\%}{.9\%} + 9$
Dave Jones, 11/08
Coventry, England
1020 (2.6)
$\dfrac{9 + (9+9)\%}{.9\%}$
Dave Jones, 11/08
Coventry, England
              1027 (3.4)
$\dfrac{9}{9\pmf} + 9 \times \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
    1030 (3.6)
$\dfrac{9 + 9\% \times \sqrt{9}}{9\pmf}$
Steve Wilson, 8/23
Lawrence, KS
            1036 (4.0)
$\dfrac{9}{9\pmf} + (\sqrt{9})! \times (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
       
                    1050 (4.2)
$\dfrac{9 - \sqrt{9} + \sqrt{9\%}}{(\sqrt{9})!\pmf}$
Steve Wilson, 8/23
Lawrence, KS
        1054 (3.6)
$\dfrac{9}{9\pmf} + 9 \times (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
          1060 (3.8)
$\dfrac{9 + 9\% \times (\sqrt{9})!}{9\pmf}$
Steve Wilson, 8/23
Lawrence, KS
    1062 (4.8)
$9 \times (99 - \coth\ln\sqrt{.9})$
Steve Wilson, 8/23
Lawrence, KS
               
                    1080 (2.8)
$\dfrac{9.9 + .9}{.\overline{9}\%}$
Steve Wilson, 10/11
Raytown, MO
  1081 (2.4)
$\dfrac{9}{.9\%} + 9 \times 9$
Dave Jones, 11/08
Coventry, England
              1089 (4.8)
$99 \times (9 - \log(.\overline{9}\%))$
Steve Wilson, 8/23
Lawrence, KS
1090 (2.4)
$\dfrac{99 - .9}{9\%}$
Dave Jones, 11/08
Coventry, England
  1091 (2.2)
$\dfrac{99}{9\%} - 9$
Amy Koger, 9/08
Fort Scott, KS
    1094 (3.6)
$\dfrac{99}{9\%} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1097 (3.4)
$\dfrac{99}{9\%} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
  1099 (2.4)
$\dfrac{9}{.9\%} + 99$
Dave Jones, 12/08
Coventry, England
1100 (2.6)
$\dfrac{99}{9\%} \times .\overline{9}$
Steve Wilson, 2/09
Raytown, MO
  1101 (2.4)
$\dfrac{99 + 9\%}{9\%}$
Dave Jones, 12/08
Coventry, England
  1103 (3.4)
$\dfrac{99}{9\%} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
    1106 (3.6)
$\dfrac{99}{9\%} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1109 (2.2)
$\dfrac{99}{9\%} + 9$
Amy Koger, 9/08
Fort Scott, KS
1110 (2.2)
$\dfrac{999}{.9}$
Dave Jones, 12/08
Coventry, England
  1111 (2.8)
$\dfrac{9 - 9\%\%}{9\% \times 9\%}$
Steve Wilson, 10/11
Raytown, MO
        1116 (3.0)
$\dfrac{.9}{(9 - .\overline{9})\%\%} - 9$
Steve Wilson, 10/11
Raytown, MO
    1119 (4.0)
$\dfrac{9}{(9 - .\overline{9})\pmf} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
 
    1122 (3.8)
$\dfrac{9}{(9 - .\overline{9})\pmf} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
  1124 (3.4)
$\dfrac{.9}{(9 - .\overline{9})\%\%} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
1125 (2.6)
$\dfrac{9}{\left(.9 - \dfrac{.9}{9}\right)\%}$
Steve Wilson, 8/23
Lawrence, KS
1126 (3.4)
$\dfrac{.9}{(9 - .\overline{9})\%\%} + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
  1128 (3.8)
$\dfrac{9}{(9 - .\overline{9})\pmf} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
   
  1131 (4.0)
$\dfrac{9}{(9 - .\overline{9})\pmf} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1134 (3.0)
$\dfrac{.9}{(9 - .\overline{9})\%\%} + 9$
Steve Wilson, 10/11
Raytown, MO
           
                1188 (3.2)
$99 \times (9 + \sqrt{9})$
Steve Wilson, 8/23
Lawrence, KS
  1190 (4.8)
$\dfrac{.9 + \sqrt{9\%} - .\overline{9}\%}{.\overline{9}\pmf}$
Steve Wilson, 8/23
Lawrence, KS
  1191 (3.8)
$\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - 9$
Steve Wilson, 8/23
Lawrence, KS
    1194 (4.2)
$\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1197 (4.0)
$\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
  1199 (4.2)
$\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
1200 (2.2)
$\dfrac{99 + 9}{9\%}$
Dave Jones, 12/08
Coventry, England

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).