\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\sech} {sech} \DeclareMathOperator {\csch} {csch} \)

Integermania!

Four Nines

This problem was proposed by Integermaniac master Ralph Jeffords. Create each of the positive integers using four copies of 9, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here!  This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).

  1201 (4.2)
$\dfrac{9 + \sqrt{9}}{.\overline{9}\%} + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
  1203 (4.0)
$\dfrac{9 + \sqrt{9}}{.\overline{9}\%} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
    1206 (4.2)
$\dfrac{9 + \sqrt{9}}{.\overline{9}\%} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1209 (3.8)
$\dfrac{9 + \sqrt{9}}{.\overline{9}\%} + 9$
Steve Wilson, 8/23
Lawrence, KS
1210 (4.8)
$\dfrac{.9 + \sqrt{9\%} + .\overline{9}\%}{.\overline{9}\pmf}$
Steve Wilson, 8/23
Lawrence, KS
                    1220 (3.8)
$((\sqrt{9})!)! + \dfrac{9}{(9 + 9)\pmf}$
Steve Wilson, 8/23
Lawrence, KS
  1241 (3.2)
$\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} - 9$
Steve Wilson, 8/23
Lawrence, KS
    1244 (4.6)
$\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1247 (4.4)
$\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
  1249 (3.6)
$\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
1250 (2.4)
$\dfrac{9}{(9 \times 9 - 9)\%\%}$
Steve Wilson, 10/11
Raytown, MO
  1251 (3.6)
$\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
  1253 (4.4)
$\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
    1256 (4.6)
$\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1259 (3.2)
$\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} + 9$
Steve Wilson, 8/23
Lawrence, KS
 
                    1280 (3.8)
$\dfrac{9 + 9}{9\pmf} - ((\sqrt{9})!)!$
Steve Wilson, 8/23
Lawrence, KS
                1458 (1.0)
$(9 + 9) \times 9 \times 9$
Levi Self, 5/08
San Antonio, TX
   
          1485 (3.4)
$99 \times (9 + (\sqrt{9})!)$
Steve Wilson, 8/23
Lawrence, KS
         
  1491 (4.0)
$\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} - 9$
Steve Wilson, 8/23
Lawrence, KS
    1494 (4.4)
$\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1497 (4.2)
$\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
  1499 (4.4)
$\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} - .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
1500 (3.6)
$\dfrac{9}{9\%} \times (9 + (\sqrt{9})!)$
Steve Wilson, 8/23
Lawrence, KS
  1501 (4.4)
$\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} + .\overline{9}$
Steve Wilson, 8/23
Lawrence, KS
  1503 (4.2)
$\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
    1506 (4.4)
$\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1509 (4.0)
$\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} + 9$
Steve Wilson, 8/23
Lawrence, KS
 
                1548 (4.8)
$9 - \dfrac{9 \times 9}{\tanh\ln\sqrt{.9}}$
Steve Wilson, 8/23
Lawrence, KS
   
                    1620 (2.8)
$(9 + 9) \times \dfrac{.9}{.\overline{9}\%}$
Steve Wilson, 10/11
Raytown, MO
                    1700 (3.0)
$\dfrac{9 + 9 - .\overline{9}}{.\overline{9}\%}$
Steve Wilson, 10/11
Raytown, MO
                    1710 (2.8)
$\dfrac{9 + 9 \times .9}{.\overline{9}\%}$
Steve Wilson, 10/11
Raytown, MO
    1782 (2.0)
$(9 + 9) \times 99$
Dave Jones, 1/09
Coventry, England
               
                    1790 (4.6)
$\dfrac{.9 + .9 - .\overline{9}\%}{.\overline{9}\pmf}$
Steve Wilson, 8/23
Lawrence, KS
  1791 (2.6)
$\dfrac{9 + 9}{.\overline{9}\%} - 9$
Steve Wilson, 10/11
Raytown, MO
    1794 (4.0)
$\dfrac{9 + 9}{.\overline{9}\%} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1797 (3.8)
$\dfrac{9 + 9}{.\overline{9}\%} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
  1799 (3.0)
$\dfrac{9 + 9}{.\overline{9}\%} - .\overline{9}$
Steve Wilson, 10/11
Raytown, MO
1800 (2.2)
$(9 + 9) \times \dfrac{9}{9\%}$
Dave Jones, 1/09
Coventry, England
  1801 (3.0)
$\dfrac{9 + 9}{.\overline{9}\%} + .\overline{9}$
Steve Wilson, 11/11
Raytown, MO
  1803 (3.8)
$\dfrac{9 + 9}{.\overline{9}\%} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
    1806 (4.0)
$\dfrac{9 + 9}{.\overline{9}\%} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1809 (2.6)
$\dfrac{9 + 9}{.\overline{9}\%} + 9$
Steve Wilson, 11/11
Raytown, MO
1810 (4.6)
$\dfrac{.9 + .9 + .\overline{9}\%}{.\overline{9}\pmf}$
Steve Wilson, 8/23
Lawrence, KS
                    1890 (2.6)
$\dfrac{9.9 + 9}{.\overline{9}\%}$
Steve Wilson, 11/11
Raytown, MO
                    1900 (2.6)
$\dfrac{9 + 9 - .9}{.9\%}$
Dave Jones, 1/09
Coventry, England
                    1990 (2.6)
$\dfrac{9 + 9 - 9\%}{.9\%}$
Dave Jones, 1/09
Coventry, England
  1991 (2.4)
$\dfrac{9 + 9}{.9\%} - 9$
Dave Jones, 1/09
Coventry, England
    1994 (3.6)
$\dfrac{9 + 9}{9\pmf} - (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    1997 (3.4)
$\dfrac{9 + 9}{9\pmf} - \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
  1999 (2.8)
$\dfrac{9 + 9 - .9\%}{.9\%}$
Steve Wilson, 11/11
Raytown, MO
2000 (2.8)
$\dfrac{9}{.9\%} + \dfrac{9}{.9\%}$
Dave Jones, 2/09
Coventry, England
  2001 (2.8)
$\dfrac{9 + 9 + .9\%}{.9\%}$
Steve Wilson, 11/11
Raytown, MO
  2003 (3.4)
$\dfrac{9 + 9}{9\pmf} + \sqrt{9}$
Steve Wilson, 8/23
Lawrence, KS
    2006 (3.6)
$\dfrac{9 + 9}{9\pmf} + (\sqrt{9})!$
Steve Wilson, 8/23
Lawrence, KS
    2009 (2.4)
$\dfrac{9 + 9}{.9\%} + 9$
Dave Jones, 2/09
Coventry, England
2010 (2.6)
$\dfrac{9 + 9 + 9\%}{.9\%}$
Dave Jones, 2/09
Coventry, England
                    2100 (2.4)
$\dfrac{9.9 + 9}{.9\%}$
Dave Jones, 2/09
Coventry, England
              2187 (3.2)
$9 \times 9 \times 9 \times \sqrt{9}$
Harman Tiwana, 10/12
Lenexa, KS
     
      2673 (3.2)
$99 \times 9 \times \sqrt{9}$
Zach Warring, 11/09
Olathe, Kansas
             
                    2700 (2.6)
$\dfrac{9 + 9 + 9}{.\overline{9}\%}$
Steve Wilson, 11/11
Raytown, MO
                    3000 (2.4)
$\dfrac{9 + 9 + 9}{.9\%}$
Dave Jones, 2/09
Coventry, England
                    4050 (3.0)
$\dfrac{9 \times 9}{(.\overline{9} + .\overline{9})\%}$
Steve Wilson, 11/11
Raytown, MO
  4471 (3.2)
$\dfrac{9!}{9 \times 9} - 9$
Zach Warring, 11/09
Olathe, Kansas
                 
                  4489 (3.2)
$\dfrac{9!}{9 \times 9} + 9$
Zach Warring, 11/09
Olathe, Kansas
 
                    4500 (2.6)
$\dfrac{9}{(.9 + .9)\%} \times 9$
Dave Jones, 4/09
Coventry, England
                    5500 (2.6)
$\dfrac{99}{(.9 + .9)\%}$
Dave Jones, 4/09
Coventry, England
    6552 (3.2)
$9^{\sqrt{9}} \times 9 - 9$
Chelsea Kiddle, 11/12
Leawood, KS
               
  6561 (1.0)
$9 \times 9 \times 9 \times 9$
Jeremy Miller, 11/07
Olathe, KS
                6570 (3.2)
$9^{\sqrt{9}} \times 9 + 9$
Chelsea Kiddle, 11/12
Leawood, KS
                    8000 (2.4)
$\dfrac{9 \times 9 - 9}{.9\%}$
Dave Jones, 4/09
Coventry, England
                  8019 (2.0)
$99 \times 9 \times 9$
Dave Jones, 4/09
Coventry, England
 
                    8100 (2.2)
$9 \times 9 \times \dfrac{9}{9\%}$
Dave Jones, 4/09
Coventry, England
  8991 (2.0)
$999 \times 9$
Regina Hillman, 12/07
Bucyrus, KS
                 
  9801 (2.0)
$99 \times 99$
Brooke Atkinson, 4/09
Olathe, KS
                 
  13431 (3.4)
$\dfrac{9!}{9 \times \sqrt{9}} - 9$
Zach Warring, 11/09
Olathe, Kansas
                13440 (3.4)
$\dfrac{9!}{9} \times \dfrac{\sqrt{9}}{9}$
Tyler Cox, 12/09
Olathe, Kansas
                  13449 (3.4)
$\dfrac{9!}{9 \times \sqrt{9}} + 9$
Zach Warring, 11/09
Olathe, Kansas
 
                    40320 (3.2)
$\dfrac{9!}{9} \times \dfrac99$
Rabeh Ghadiri, 12/08
Overland Park, KS
  40401 (3.2)
$\dfrac{9!}{9} + 9 \times 9$
Chad Ojeda, 9/08
Overland Park, KS
                 
                    44800 (3.4)
$\dfrac{ \dfrac{9!}{9} + 9!}{9}$
Nicole Bunch, 2/09
Kansas City, MO
                    241920 (3.6)
$(\sqrt{9} + \sqrt{9}) \times \dfrac{9!}{9}$
Rabeh Ghadiri, 11/08
Overland Park, KS
      362853 (3.2)
$9! - 9 - 9 - 9$
Nicole Bunch, 2/09
Kansas City, MO
             
  362871 (3.2)
$9! + 9 - 9 - 9$
Nicole Bunch, 2/09
Kansas City, MO
                 
  362881 (3.2)
$\dfrac{9! \times 9 + 9}{9}$
Rabeh Ghadiri, 10/08
Overland Park, KS
              362889 (3.2)
$9! + 9 \times \dfrac99$
Nicole Bunch, 2/09
Kansas City, MO
 
                    403200 (3.4)
$\dfrac{9! \times 9 + 9!}{9}$
Nicole Bunch, 2/09
Kansas City, MO
                    3265920 (3.2)
$9! \times 9 \times \dfrac99$
Nicole Bunch, 2/09
Kansas City, MO
  3628791 (3.2)
$9! \times 9 + 9! - 9$
Nicole Bunch, 2/09
Kansas City, MO
                 
              14348907 (3.2)
$\dfrac{9^9}{9 \times \sqrt{9}}$
Chad Ojeda, 9/08
Overland Park, KS
     
                32332608 (3.4)
$99 \times .9 \times 9!$
Nicole Bunch, 2/09
Kansas City, MO
   
    32651712 (3.2)
$99.9 \times 9!$
Nicole Bunch, 2/09
Kansas City, MO
               
                    32659200 (3.4)
$(9! \times 9 + 9!) \times 9$
Nicole Bunch, 2/09
Kansas City, MO
    43046712 (3.0)
$\dfrac{9^9}{9} - 9$
Kashmira Sayani, 1/17
Overland Park, KS
               
                    387420390 (3.0)
$9^9 - 99$
Kashmira Sayani, 4/17
Overland Park, KS
                387420408 (3.0)
$9^9 - 9 \times 9$
Lisa Fisher, 7/09
Lawrence, KS
   
                    387420570 (3.0)
$9^9 + 9 \times 9$
Lisa Fisher, 7/09
Lawrence, KS
                387420588 (3.0)
$9^9 + 99$
Lisa Fisher, 7/09
Lawrence, KS
   
      129140163 (3.2)
$9^9 \times \dfrac{\sqrt{9}}{9}$
Tyler Cox, 12/09
Olathe, Kansas
             
              1162261467 (3.2)
$9^9 \times \dfrac{9}{\sqrt{9}}$
Chad Ojeda, 9/08
Overland Park, KS
     
                    googol (3.4)
$\left( \dfrac{9}{.9} \right) ^{9/(9\%)}$
Paolo Pellegrini, 5/08
Martina Franca, Italy
                    googolplex (4.4)
$9.\overline{9}^{\left( \sqrt[-(\sqrt{9})\%]{ .\overline{9}\pmf} \right)}$
Ralph Jeffords, 3/09
Centreville, VA

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).