$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

## Integermania!

#### Jan Hus

Jan Hus was a church reformer who lived and worked in Prague, but was executed on 6 July 1415 by the church authorities because of his teachings. If we write this date in European format, ignoring the century, we have the date 6.7.15. Using one copy each of the digits 1, 5, 6, and 7, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+)

 801 (2.2) $\dfrac{56}{7\%} + 1$ Jonathan Frank, 4/23Rye, NY 802 (4.6) $\dfrac{56}{7\%} - \log(1\%)$ Steve Wilson, 6/23Lawrence, KS 803 (4.6) $\dfrac{56}{7\%} - \log(1\pm)$ Steve Wilson, 6/23Lawrence, KS 804 (3.6) $\dfrac{76}{.\overline{1}} + 5!$ Jonathan Frank, 4/23Rye, NY 805 (2.6) $\dfrac{5 - .17}{.6\%}$ Steve Wilson, 5/23Lawrence, KS 806 (3.8) $\sqrt{(5\%^{-6})\%} + 7 - 1$ Steve Wilson, 6/23Lawrence, KS 807 (2.6) $\dfrac{1 - .6}{5\%\%} + 7$ Steve Wilson, 5/23Lawrence, KS 808 (2.8) $\dfrac{7 + \dfrac{.6}{.\overline{5}}}{1\%}$ Steve Wilson, 5/23Lawrence, KS 809 (4.2) $\left( \sqrt[-.5]{.\overline{1}\%} \right)\pm + 6 - 7$ Steve Wilson, 6/23Lawrence, KS 810 (2.2) $\dfrac{76 + 5}{.1}$ Steve Wilson, 5/23Lawrence, KS 811 (4.8) $6! + 71 + \cot\arctan(5\%)$ Steve Wilson, 7/23Lawrence, KS 812 (3.4) $7 \times (5! - \sqrt{16})$ Steve Wilson, 6/23Lawrence, KS 813 (2.6) $\dfrac{\dfrac{5}{6\%} + 7}{.\overline{1}}$ Steve Wilson, 5/23Lawrence, KS 814 (3.4) $\dfrac{7}{1\%} + 5! - 6$ Steve Wilson, 6/23Lawrence, KS 815 (4.8) $6! + \cot\arctan(1^7\%) - 5$ Steve Wilson, 7/23Lawrence, KS 816 (3.6) $5! \times 7 - (\sqrt{16})!$ Steve Wilson, 6/23Lawrence, KS 817 (3.8) $\sqrt{(5\%^{-6})\%} + 17$ Steve Wilson, 6/23Lawrence, KS 818 (4.8) $7 \times (5! - \ln\sqrt{\exp 6}) - 1$ Steve Wilson, 7/23Lawrence, KS 819 (4.8) $7 \times (5! - \ln\sqrt{\exp 6}) \times 1$ Steve Wilson, 7/23Lawrence, KS 820 (2.2) $\dfrac{7 \times 6 - 1}{5\%}$ Jonathan Frank, 4/23Rye, NY 821 (2.6) $\dfrac{5}{.\overline{6}\%} + 71$ Steve Wilson, 5/23Lawrence, KS 822 (3.2) $(5! + 17) \times 6$ Steve Wilson, 6/23Lawrence, KS 823 (3.4) $6! + 5! - 17$ Jonathan Frank, 4/23Rye, NY 824 (3.2) $5! \times 7 - 16$ Jonathan Frank, 4/23Rye, NY 825 (2.6) $\dfrac{7 - 1.5}{.\overline{6}\%}$ Steve Wilson, 5/23Lawrence, KS 826 (2.4) $(6 - .1) \times \dfrac{7}{5\%}$ Steve Wilson, 5/23Lawrence, KS 827 (3.2) $(5! - 1) \times 7 - 6$ Steve Wilson, 6/23Lawrence, KS 828 (2.4) $(7 - .1) \times \dfrac{6}{5\%}$ Steve Wilson, 5/23Lawrence, KS 829 (4.8) $5! \times 7 - 6 + \log(1\%\pm)$ Steve Wilson, 7/23Lawrence, KS 830 (3.8) $\dfrac{7!\pm - (5 + 1)\%\phantom.}{6\pmf}$ Steve Wilson, 6/23Lawrence, KS 831 (4.6) $5! \times 7 - 6 + \log(1\pm)$ Steve Wilson, 7/23Lawrence, KS 832 (3.4) $6! + 5! - 7 - 1$ Jonathan Frank, 4/23Rye, NY 833 (2.2) $7 \times \left( \dfrac{6}{5\%} - 1 \right)$ Steve Wilson, 5/23Lawrence, KS 834 (2.2) $6 \times \left( \dfrac{7}{5\%} - 1 \right)$ Steve Wilson, 5/23Lawrence, KS 835 (2.0) $167 \times 5$ Jonathan Frank, 4/23Rye, NY 836 (3.2) $716 + 5!$ Steve Wilson, 6/23Lawrence, KS 837 (2.4) $\dfrac{651}{.\overline{7}}$ Steve Wilson, 5/23Lawrence, KS 838 (2.4) $\dfrac{6 \times 7 - .1}{5\%}$ Steve Wilson, 5/23Lawrence, KS 839 (2.2) $\dfrac{7 \times 6}{5\%} - 1$ Jonathan Frank, 4/23Rye, NY 840 (2.2) $\dfrac{7 \times 6 \times 1}{5\%}$ Jonathan Frank, 4/23Rye, NY 841 (2.2) $\dfrac{7 \times 6}{5\%} + 1$ Jonathan Frank, 4/23Rye, NY 842 (2.4) $\dfrac{6 \times 7 + .1}{5\%}$ Steve Wilson, 5/23Lawrence, KS 843 (2.2) $\dfrac{51}{6\%} - 7$ Steve Wilson, 5/23Lawrence, KS 844 (2.6) $\dfrac{5 + 7\%}{.6\%} - 1$ Steve Wilson, 5/23Lawrence, KS 845 (2.4) $\dfrac{ \dfrac{5}{1\%} + 7}{.6}$ Steve Wilson, 5/23Lawrence, KS 846 (2.2) $6 \times \left( \dfrac{7}{5\%} + 1 \right)$ Steve Wilson, 5/23Lawrence, KS 847 (2.2) $7 \times \left( \dfrac{6}{5\%} + 1 \right)$ Steve Wilson, 5/23Lawrence, KS 848 (3.4) $6! + 5! + 7 + 1$ Jonathan Frank, 4/23Rye, NY 849 (2.6) $\dfrac{6 - 5\%}{.7\%} - 1$ Steve Wilson, 5/23Lawrence, KS 850 (2.4) $\dfrac{ \dfrac{6}{1\%} - 5}{.7}$ Steve Wilson, 5/23Lawrence, KS 851 (2.6) $\dfrac{6 - 5\%}{.7\%} + 1$ Steve Wilson, 5/23Lawrence, KS 852 (2.2) $71 \times \dfrac{6}{.5}$ Jonathan Frank, 4/23Rye, NY 853 (3.2) $(5! + 1) \times 7 + 6$ Steve Wilson, 6/23Lawrence, KS 854 (2.2) $61 \times \dfrac{7}{.5}$ Jonathan Frank, 4/23Rye, NY 855 (2.6) $\dfrac{5.7}{.\overline{6}\%} \times 1$ Steve Wilson, 5/23Lawrence, KS 856 (2.6) $\dfrac{5.7}{.\overline{6}\%} + 1$ Steve Wilson, 5/23Lawrence, KS 857 (2.2) $\dfrac{51}{6\%} + 7$ Steve Wilson, 5/23Lawrence, KS 858 (2.8) $\dfrac{5 + 1 + .6\%}{.7\%}$ Steve Wilson, 5/23Lawrence, KS 859 (3.4) $6! + \dfrac{7}{5\%} - 1$ Steve Wilson, 6/23Lawrence, KS 860 (2.2) $\dfrac{7 \times 6 + 1}{5\%}$ Jonathan Frank, 4/23Rye, NY 861 (3.4) $6! + \dfrac{7}{5\%} + 1$ Steve Wilson, 6/23Lawrence, KS 862 (2.8) $\dfrac{6 - .1\%}{.7\%} + 5$ Steve Wilson, 5/23Lawrence, KS 863 (3.4) $\dfrac{7! - 6!}{5} - 1$ Steve Wilson, 6/23Lawrence, KS 864 (2.8) $(7 + 1) \times \dfrac{.6}{.\overline{5}\%}$ Steve Wilson, 5/23Lawrence, KS 865 (3.4) $\dfrac{7! - 6!}{5} + 1$ Steve Wilson, 6/23Lawrence, KS 866 (4.8) $\dfrac{7! - 6!}{5} - \log(1\%)$ Steve Wilson, 7/23Lawrence, KS 867 (4.8) $\dfrac{7! - 6!}{5} - \log(1\pm)$ Steve Wilson, 7/23Lawrence, KS 868 (3.2) $7 \times \left( \sqrt{5^6} - 1 \right)$ Steve Wilson, 6/23Lawrence, KS 869 (3.6) $7 \times \sqrt[\sqrt{.\overline{1}}]{5} - 6$ Steve Wilson, 6/23Lawrence, KS 870 (2.8) $\dfrac{5.7 + .1}{.\overline{6}\%}$ Steve Wilson, 5/23Lawrence, KS 871 (3.6) $6! \times 5!\% + 7 \times 1$ Steve Wilson, 6/23Lawrence, KS 872 (3.6) $6! \times 5!\% + 7 + 1$ Steve Wilson, 6/23Lawrence, KS 873 (4.6) $7 \times \sqrt{5^6} + \log(1\%)$ Steve Wilson, 7/23Lawrence, KS 874 (3.2) $7 \times \sqrt{5^6} - 1$ Jonathan Frank, 4/23Rye, NY 875 (2.4) $\dfrac{1}{\left( \dfrac57 - .6 \right)\%}$ Steve Wilson, 5/23Lawrence, KS 876 (3.2) $7 \times \sqrt{5^6} + 1$ Jonathan Frank, 4/23Rye, NY 877 (4.2) $\dfrac{7!\pmf}{.\overline{6}\%} + 5! + 1$ Steve Wilson, 7/23Lawrence, KS 878 (4.6) $7 \times \sqrt{5^6} - \log(1\pm)$ Steve Wilson, 7/23Lawrence, KS 879 (4.6) $7 \times (5! + 6) + \log(1\pm)$ Steve Wilson, 7/23Lawrence, KS 880 (2.0) $176 \times 5$ Jonathan Frank, 4/23Rye, NY 881 (3.2) $7 \times (5! + 6) - 1$ Steve Wilson, 6/23Lawrence, KS 882 (2.8) $(6 + 1) \times \dfrac{.7}{.\overline{5}\%}$ Steve Wilson, 5/23Lawrence, KS 883 (3.2) $7 \times (5! + 6) + 1$ Steve Wilson, 6/23Lawrence, KS 884 (3.8) $\dfrac{(7! - 6!)\% + 1}{5\%}$ Steve Wilson, 6/23Lawrence, KS 885 (4.6) $7 \times (5! + 6) - \log(1\pm)$ Steve Wilson, 7/23Lawrence, KS 886 (4.8) $7 \times (5! + 6) - \log(1\%\%)$ Steve Wilson, 7/23Lawrence, KS 887 (4.8) $7 \times (5! + 6) - \log(1\%\pm)$ Steve Wilson, 7/23Lawrence, KS 888 (3.4) $\dfrac{7!}{5} - (6 - 1)!$ Steve Wilson, 6/23Lawrence, KS 889 (3.2) $7 \times (5! + 6 + 1)$ Steve Wilson, 6/23Lawrence, KS 890 (3.4) $\dfrac{7!}{6} + \dfrac{5}{.1}$ Steve Wilson, 6/23Lawrence, KS 891 (3.2) $\dfrac{7!}{6} + 51$ Jonathan Frank, 4/23Rye, NY 892 (4.8) $(5! + 6) \times 7 + \cot\arctan(.1)$ Steve Wilson, 7/23Lawrence, KS 893 (2.6) $\dfrac{5 + 1}{.\overline{6}\%} - 7$ Steve Wilson, 5/23Lawrence, KS 894 (3.6) $5! \times 7 + \dfrac{6}{.\overline{1}}$ Steve Wilson, 6/23Lawrence, KS 895 (2.6) $\dfrac{6 + 1}{.\overline{7}\%} - 5$ Steve Wilson, 5/23Lawrence, KS 896 (3.4) $.5^{-7} \times (6 + 1)$ Steve Wilson, 6/23Lawrence, KS 897 (4.6) $\dfrac{7!}{5.6} + \log(1\pm)$ Steve Wilson, 9/23Lawrence, KS 898 (4.6) $\dfrac{7!}{5.6} + \log(1\%)$ Steve Wilson, 9/23Lawrence, KS 899 (3.2) $\dfrac{7!}{5.6} - 1$ Steve Wilson, 9/23Lawrence, KS 900 (2.6) $(1 + 5\%) \times \dfrac{6}{.7\%}$ Steve Wilson, 5/23Lawrence, KS 901 (3.2) $5! \times 7 + 61$ Jonathan Frank, 4/23Rye, NY 902 (4.6) $\dfrac{7!}{5.6} - \log(1\%)$ Steve Wilson, 9/23Lawrence, KS 903 (3.8) $6! + 5! + \dfrac{7}{.\overline{1}}$ Steve Wilson, 6/23Lawrence, KS 904 (4.6) $5! \times 7 + (\log(1\%))^6$ Steve Wilson, 7/23Lawrence, KS 905 (2.6) $\dfrac{6 + 1}{.\overline{7}\%} + 5$ Steve Wilson, 5/23Lawrence, KS 906 (4.8) $5! \times 7.6 + \log(1\pmm)$ Steve Wilson, 7/23Lawrence, KS 907 (2.6) $\dfrac{5 + 1}{.\overline{6}\%} + 7$ Steve Wilson, 5/23Lawrence, KS 908 (3.6) $5! \times (7.\overline{6} - .1)$ Steve Wilson, 6/23Lawrence, KS 909 (4.6) $5! \times 7.6 + \log(1\pm)$ Steve Wilson, 7/23Lawrence, KS 910 (3.6) $6! + 5! + \dfrac{7}{.1}$ Steve Wilson, 6/23Lawrence, KS 911 (3.2) $5! \times 7.6 - 1$ Steve Wilson, 6/23Lawrence, KS 912 (2.0) $57 \times 16$ Jonathan Frank, 4/23Rye, NY 913 (3.2) $5! \times 7.6 + 1$ Steve Wilson, 6/23Lawrence, KS 914 (4.6) $5! \times 7.6 - \log(1\%)$ Steve Wilson, 7/23Lawrence, KS 915 (4.6) $5! \times 7.6 - \log(1\pm)$ Steve Wilson, 7/23Lawrence, KS 916 (4.8) $\cot\arctan(1\pm) - \dfrac{7 \times 6}{.5}$ Steve Wilson, 7/23Lawrence, KS 917 (4.8) $5! \times 7.\overline{6} + \log(1\pm)$ Steve Wilson, 7/23Lawrence, KS 918 (4.8) $5! \times 7.\overline{6} + \log(1\%)$ Steve Wilson, 7/23Lawrence, KS 919 (3.4) $5! \times 7.\overline{6} - 1$ Steve Wilson, 6/23Lawrence, KS 920 (2.4) $\dfrac{5 + 6 \times .7}{1\%}$ Steve Wilson, 5/23Lawrence, KS 921 (3.4) $5! \times 7.\overline{6} + 1$ Steve Wilson, 6/23Lawrence, KS 922 (3.6) $\dfrac{6! + 1}{.\overline{7}} - 5$ Steve Wilson, 9/23Lawrence, KS 923 (4.6) $\cot\arctan(1\pm) - 7 \times (6 + 5)$ Steve Wilson, 7/23Lawrence, KS 924 (2.6) $\dfrac{6 + 1}{.\overline{75}\%}$ Steve Wilson, 5/23Lawrence, KS 925 (3.6) $\sqrt{.1^{-6}} - 75$ Steve Wilson, 6/23Lawrence, KS 926 (4.8) $6! + \cot\arctan(5\pm) + 7 - 1$ Steve Wilson, 7/23Lawrence, KS 927 (3.4) $6! + \dfrac{1}{5\pmf} + 7$ Steve Wilson, 6/23Lawrence, KS 928 (4.6) $\cot\arctan(1\pm) - 67 - 5$ Steve Wilson, 7/23Lawrence, KS 929 (4.6) $\cot\arctan(1\pm) - 76 + 5$ Steve Wilson, 7/23Lawrence, KS 930 (2.2) $\dfrac{651}{.7}$ Steve Wilson, 5/23Lawrence, KS 931 (4.6) $\cot\arctan(1\pm) - 75 + 6$ Steve Wilson, 7/23Lawrence, KS 932 (3.6) $5! \times (7.\overline{6} + .1)$ Steve Wilson, 6/23Lawrence, KS 933 (3.6) $(.1^{-5})\% - 67$ Steve Wilson, 6/23Lawrence, KS 934 (2.8) $\left( \dfrac{7}{.5\%} + 1 \right) \times .\overline{6}$ Steve Wilson, 5/23Lawrence, KS 935 (3.6) $6! \times 5!\% + 71$ Steve Wilson, 6/23Lawrence, KS 936 (2.8) $\dfrac{7 \times .6 + 1}{.\overline{5}\%}$ Steve Wilson, 5/23Lawrence, KS 937 (4.6) $\cot\arctan(1\pm) - 57 - 6$ Steve Wilson, 7/23Lawrence, KS 938 (4.6) $\cot\arctan(1\pm) - 67 + 5$ Steve Wilson, 7/23Lawrence, KS 940 (2.6) $\dfrac{\dfrac{6}{.\overline{1}} - 7}{5\%}$ Steve Wilson, 5/23Lawrence, KS 942 (2.0) $157 \times 6$ Jonathan Frank, 4/23Rye, NY 943 (3.6) $\sqrt{.1^{-6}} - 57$ Steve Wilson, 6/23Lawrence, KS 944 (3.8) $(.1^{-7})\%\% - 56$ Steve Wilson, 6/23Lawrence, KS 945 (2.6) $\dfrac{7}{.1 - \dfrac{.\overline{5}}{6}}$ Steve Wilson, 5/23Lawrence, KS 946 (4.8) $\dfrac{57}{6\%} + \log(1\%\%)$ Steve Wilson, 7/23Lawrence, KS 947 (3.2) $\dfrac{7!}{5} - 61$ Jonathan Frank, 4/23Rye, NY 948 (3.4) $\dfrac{7!}{5} - \dfrac{6}{.1}$ Steve Wilson, 6/23Lawrence, KS 949 (2.2) $\dfrac{57}{6\%} - 1$ Steve Wilson, 5/23Lawrence, KS 950 (2.2) $\dfrac{57}{6\%} \times 1$ Steve Wilson, 5/23Lawrence, KS 951 (2.2) $\dfrac{57}{6\%} + 1$ Steve Wilson, 5/23Lawrence, KS 952 (2.0) $56 \times 17$ Jonathan Frank, 4/23Rye, NY 953 (2.8) $\dfrac{6 - .7}{.\overline{5}\%} - 1$ Steve Wilson, 5/23Lawrence, KS 954 (2.8) $\dfrac{6 - .7}{.\overline{5}\%} \times 1$ Steve Wilson, 5/23Lawrence, KS 955 (2.8) $\dfrac{6 - .7}{.\overline{5}\%} + 1$ Steve Wilson, 5/23Lawrence, KS 956 (4.8) $\dfrac{57}{6\%} - \log(1\pmm)$ Steve Wilson, 7/23Lawrence, KS 957 (3.6) $\sqrt[-.1]{.5} - 67$ Steve Wilson, 6/23Lawrence, KS 958 (3.6) $(.1^{-5})\% - 7 \times 6$ Steve Wilson, 6/23Lawrence, KS 959 (4.8) $5! \times (7 + 1) - \cos(6!^\circ)$ Steve Wilson, 7/23Lawrence, KS 960 (2.2) $(7 + 1) \times \dfrac{6}{5\%}$ Jonathan Frank, 4/23Rye, NY 961 (4.8) $5! \times (7 + 1) + \cos(6!^\circ)$ Steve Wilson, 7/23Lawrence, KS 962 (4.8) $\dfrac{6!}{75\%} - \log(1\%)$ Steve Wilson, 7/23Lawrence, KS 963 (2.8) $\dfrac{6 - 5 + 7\%}{.\overline{1}\%}$ Steve Wilson, 5/23Lawrence, KS 964 (4.0) $(.1)^{-7}\%\% - \sqrt[.5]{6}$ Steve Wilson, 7/23Lawrence, KS 965 (3.6) $\sqrt{.1^{-6}} - 7 \times 5$ Steve Wilson, 6/23Lawrence, KS 966 (3.2) $5! \times (7 + 1) + 6$ Steve Wilson, 6/23Lawrence, KS 968 (4.8) $(5! + \cos(6!^\circ)) \times (7 + 1)$ Steve Wilson, 7/23Lawrence, KS 970 (3.8) $(.1^{-7})\%\% - 6 \times 5$ Steve Wilson, 6/23Lawrence, KS 971 (3.6) $7! \times 5\% + 6! - 1$ Steve Wilson, 6/23Lawrence, KS 972 (2.6) $\dfrac{7 - 1.6}{.\overline{5}\%}$ Steve Wilson, 5/23Lawrence, KS 973 (3.6) $7! \times 5\% + 6! + 1$ Steve Wilson, 6/23Lawrence, KS 974 (2.8) $\dfrac{7 - .5}{.\overline{6}\%} - 1$ Steve Wilson, 5/23Lawrence, KS 975 (2.6) $\dfrac{7.5 - 1}{.\overline{6}\%}$ Steve Wilson, 5/23Lawrence, KS 976 (2.8) $\dfrac{7 - .5}{.\overline{6}\%} + 1$ Steve Wilson, 5/23Lawrence, KS 979 (4.8) $\cot\arctan(1\pm) - 7 \times 6 \times .5$ Steve Wilson, 7/23Lawrence, KS 980 (2.2) $(6 + 1) \times \dfrac{7}{5\%}$ Jonathan Frank, 4/23Rye, NY 981 (4.8) $\cot\arctan(1\pm) - \dfrac{6}{.5} - 7$ Steve Wilson, 7/23Lawrence, KS 982 (3.6) $\sqrt[-.1]{.5} - 7 \times 6$ Steve Wilson, 6/23Lawrence, KS 983 (3.0) $\dfrac{.6 + .5}{.\overline{1}\%} - 7$ Steve Wilson, 9/23Lawrence, KS 984 (3.6) $\dfrac{7!}{5} - (\sqrt{16})!$ Steve Wilson, 6/23Lawrence, KS 985 (4.6) $\cot\arctan((7 - 6)\pm) - 15$ Steve Wilson, 7/23Lawrence, KS 986 (2.6) $\dfrac{6 - 1 - 7\%}{.5\%}$ Steve Wilson, 5/23Lawrence, KS 987 (3.6) $(.1^{-5})\% - 7 - 6$ Steve Wilson, 6/23Lawrence, KS 988 (3.6) $\sqrt{.1^{-6}} - 7 - 5$ Steve Wilson, 6/23Lawrence, KS 989 (3.8) $(.1^{-7})\%\% - 6 - 5$ Steve Wilson, 6/23Lawrence, KS 990 (2.8) $\dfrac{7.1 - .5}{.\overline{6}\%}$ Steve Wilson, 5/23Lawrence, KS 991 (4.8) $6! + \cot\arctan(5\pm) + 71$ Steve Wilson, 7/23Lawrence, KS 992 (3.2) $\dfrac{7!}{5} - 16$ Jonathan Frank, 4/23Rye, NY 993 (2.4) $\dfrac{5 + 1}{.6\%} - 7$ Steve Wilson, 5/23Lawrence, KS 994 (3.4) $(1\pm^{5-7})\pm - 6$ Steve Wilson, 6/23Lawrence, KS 995 (2.4) $\dfrac{6 + 1}{.7\%} - 5$ Steve Wilson, 5/23Lawrence, KS 996 (4.6) $\dfrac{7!}{5} + 6 \times \log(1\%)$ Steve Wilson, 7/23Lawrence, KS 997 (3.0) $\dfrac{.6 + .5}{.\overline{1}\%} + 7$ Steve Wilson, 9/23Lawrence, KS 998 (3.6) $\sqrt{.1^{-6}} - 7 + 5$ Steve Wilson, 6/23Lawrence, KS 999 (2.6) $\dfrac{7}{.\overline{6}\%} - 51$ Steve Wilson, 5/23Lawrence, KS 1000 (2.4) $6 \times \dfrac{5}{.1 - 7\%}$ Steve Wilson, 5/23Lawrence, KS 1001 (3.2) $\dfrac{7!}{5} - 6 - 1$ Jonathan Frank, 4/23Rye, NY 1002 (3.2) $\dfrac{7!}{5} - 6 \times 1$ Jonathan Frank, 4/23Rye, NY 1003 (3.2) $\dfrac{7!}{5} - 6 + 1$ Jonathan Frank, 4/23Rye, NY 1004 (3.4) $\dfrac{7!}{5} - \sqrt{16}$ Steve Wilson, 6/23Lawrence, KS 1005 (2.0) $67 \times 15$ Jonathan Frank, 4/23Rye, NY 1006 (3.4) $(1\pm^{5-7})\pm + 6$ Steve Wilson, 6/23Lawrence, KS 1007 (2.4) $\dfrac{5 + 1}{.6\%} + 7$ Steve Wilson, 5/23Lawrence, KS 1008 (3.2) $6! \times \dfrac75 \times 1$ Jonathan Frank, 4/23Rye, NY 1009 (2.6) $\dfrac{6}{.\overline{5}\%} - 71$ Steve Wilson, 5/23Lawrence, KS 1010 (2.8) $\dfrac{6}{.\overline{5}\%} - \dfrac{7}{.1}$ Steve Wilson, 5/23Lawrence, KS 1011 (3.6) $\dfrac{5! - 7}{.\overline{1}} - 6$ Steve Wilson, 6/23Lawrence, KS 1012 (3.4) $\dfrac{7!}{5} + \sqrt{16}$ Steve Wilson, 6/23Lawrence, KS 1013 (3.2) $\dfrac{7!}{5} + 6 - 1$ Jonathan Frank, 4/23Rye, NY 1014 (2.6) $\dfrac{6 - 1 + 7\%}{.5\%}$ Steve Wilson, 5/23Lawrence, KS 1015 (2.6) $7 \times \left( \dfrac{1}{.\overline{6}\%} - 5 \right)$ Steve Wilson, 5/23Lawrence, KS 1016 (4.6) $\dfrac{7!}{5} + 6 - \log(1\%)$ Steve Wilson, 7/23Lawrence, KS 1017 (2.6) $\dfrac{ \dfrac{6}{5\%} - 7}{.\overline{1}}$ Steve Wilson, 5/23Lawrence, KS 1018 (3.2) $\sqrt[.1]{7 - 5} - 6$ Steve Wilson, 6/23Lawrence, KS 1019 (3.6) $\dfrac{5! - 6}{.\overline{1}} - 7$ Steve Wilson, 6/23Lawrence, KS 1020 (2.6) $\dfrac{7 - \dfrac15}{.\overline{6}\%}$ Steve Wilson, 5/23Lawrence, KS 1021 (4.8) $\cot\arctan(1\pm) + 7 \times 6 \times .5$ Steve Wilson, 7/23Lawrence, KS 1023 (3.6) $\dfrac{5! - 7}{.\overline{1}} + 6$ Steve Wilson, 6/23Lawrence, KS 1024 (3.2) $\dfrac{7!}{5} + 16$ Jonathan Frank, 4/23Rye, NY 1025 (3.4) $\dfrac{6! + 1}{.7} - 5$ Steve Wilson, 6/23Lawrence, KS 1026 (2.6) $\dfrac{6.7 - 1}{.\overline{5}\%}$ Steve Wilson, 5/23Lawrence, KS 1030 (2.4) $\dfrac{6 + 5 - .7}{1\%}$ Steve Wilson, 5/23Lawrence, KS 1031 (3.2) $7 + \sqrt{16^5}$ Steve Wilson, 6/23Lawrence, KS 1032 (3.6) $\dfrac{7!}{5} + (\sqrt{16})!$ Steve Wilson, 6/23Lawrence, KS 1033 (3.6) $\dfrac{5! - 6}{.\overline{1}} + 7$ Steve Wilson, 6/23Lawrence, KS 1035 (2.6) $\dfrac{7}{.\overline{6}\%} - 15$ Steve Wilson, 5/23Lawrence, KS 1037 (3.6) $\sqrt[-.1]{.5} + 7 + 6$ Steve Wilson, 6/23Lawrence, KS 1038 (2.6) $6 \times \left( \dfrac{1}{.\overline{5}\%} - 7 \right)$ Steve Wilson, 5/23Lawrence, KS 1040 (2.6) $\dfrac{7 \times .6 + 1}{.5\%}$ Steve Wilson, 5/23Lawrence, KS 1041 (2.8) $\dfrac{7 - (5 + 1)\%}{.\overline{6}\%}$ Steve Wilson, 5/23Lawrence, KS 1042 (3.6) $(.1^{-5})\% + 7 \times 6$ Steve Wilson, 6/23Lawrence, KS 1044 (2.6) $\dfrac{7}{.\overline{6}\%} - 5 - 1$ Steve Wilson, 5/23Lawrence, KS 1045 (2.6) $\dfrac{7}{.\overline{6}\%} - 5 \times 1$ Steve Wilson, 5/23Lawrence, KS 1046 (2.6) $\dfrac{7}{.\overline{6}\%} - 5 + 1$ Steve Wilson, 5/23Lawrence, KS 1047 (2.8) $\dfrac{7 - \dfrac{.1}{5}}{.\overline{6}\%}$ Steve Wilson, 5/23Lawrence, KS 1048 (2.8) $\dfrac{7}{.\overline{6}\%} - \dfrac{1}{.5}$ Steve Wilson, 5/23Lawrence, KS 1049 (3.0) $\dfrac{7 - 1\%}{.\overline{6}\%} + .5$ Steve Wilson, 6/23Lawrence, KS 1050 (2.0) $175 \times 6$ Jonathan Frank, 4/23Rye, NY 1051 (3.0) $\dfrac{7 + 1\%}{.\overline{6}\%} - .5$ Steve Wilson, 6/23Lawrence, KS 1052 (2.8) $\dfrac{7}{.\overline{6}\%} + \dfrac{1}{.5}$ Steve Wilson, 5/23Lawrence, KS 1053 (2.8) $\dfrac{7 + \dfrac{.1}{5}}{.\overline{6}\%}$ Steve Wilson, 5/23Lawrence, KS 1054 (2.6) $\dfrac{7}{.\overline{6}\%} + 5 - 1$ Steve Wilson, 5/23Lawrence, KS 1055 (2.6) $\dfrac{7}{.\overline{6}\%} + 5 \times 1$ Steve Wilson, 5/23Lawrence, KS 1056 (2.6) $\dfrac{7}{.\overline{6}\%} + 5 + 1$ Steve Wilson, 5/23Lawrence, KS 1057 (3.6) $\sqrt{.1^{-6}} + 57$ Steve Wilson, 6/23Lawrence, KS 1058 (2.6) $\dfrac{6 - .71}{.5\%}$ Steve Wilson, 5/23Lawrence, KS 1059 (2.6) $\dfrac{6 - .7}{.5\%} - 1$ Steve Wilson, 5/23Lawrence, KS 1060 (2.4) $\dfrac{\dfrac{6}{.1} - 7}{5\%}$ Steve Wilson, 6/23Lawrence, KS 1061 (2.6) $\dfrac{6 - .7}{.5\%} + 1$ Steve Wilson, 6/23Lawrence, KS 1062 (2.8) $\dfrac{6 - .7 + 1\%}{.5\%}$ Steve Wilson, 6/23Lawrence, KS 1063 (2.6) $\dfrac{6}{.\overline{5}\%} - 17$ Steve Wilson, 6/23Lawrence, KS 1064 (3.8) $\dfrac{1 + (7! - 6!)\pmf}{5\pmf}$ Steve Wilson, 6/23Lawrence, KS 1065 (2.6) $\dfrac{7}{.\overline{6}\%} + 15$ Steve Wilson, 6/23Lawrence, KS 1066 (2.8) $\dfrac{\dfrac{6}{.\overline{1}} - .7}{5\%}$ Steve Wilson, 6/23Lawrence, KS 1067 (3.6) $\dfrac{5!}{.\overline{1}} - 7 - 6$ Steve Wilson, 6/23Lawrence, KS 1068 (3.8) $6! + \sqrt[\sqrt{.\overline{1}}]{7} + 5$ Steve Wilson, 6/23Lawrence, KS 1069 (2.8) $\dfrac{6 - .1}{.\overline{5}\%} + 7$ Steve Wilson, 6/23Lawrence, KS 1070 (2.6) $\dfrac{7.1}{.\overline{6}\%} + 5$ Steve Wilson, 6/23Lawrence, KS 1071 (3.6) $\dfrac{5! - 7 + 6}{.\overline{1}}$ Steve Wilson, 6/23Lawrence, KS 1072 (2.6) $\dfrac{6}{.\overline{5}\%} - 7 - 1$ Steve Wilson, 6/23Lawrence, KS 1073 (2.6) $\dfrac{6}{.\overline{5}\%} - 7 \times 1$ Steve Wilson, 6/23Lawrence, KS 1074 (2.6) $\dfrac{6}{.\overline{5}\%} - 7 + 1$ Steve Wilson, 6/23Lawrence, KS 1075 (2.6) $\dfrac{5 - .7}{(1 - .6)\%}$ Steve Wilson, 6/23Lawrence, KS 1076 (3.6) $(.1)^{-5}\% + 76$ Steve Wilson, 7/23Lawrence, KS 1079 (3.6) $\dfrac{5!}{.\overline{1}} - 7 + 6$ Steve Wilson, 6/23Lawrence, KS 1080 (2.2) $\dfrac{61 - 7}{5\%}$ Steve Wilson, 6/23Lawrence, KS 1081 (3.6) $\dfrac{5!}{.\overline{1}} + 7 - 6$ Steve Wilson, 6/23Lawrence, KS 1085 (2.6) $7 \times \left( \dfrac{1}{.\overline{6}\%} + 5 \right)$ Steve Wilson, 6/23Lawrence, KS 1086 (2.6) $\dfrac{6}{.\overline{5}\%} + 7 - 1$ Steve Wilson, 6/23Lawrence, KS 1087 (2.6) $\dfrac{6}{.\overline{5}\%} + 7 \times 1$ Steve Wilson, 6/23Lawrence, KS 1088 (2.6) $\dfrac{6}{.\overline{5}\%} + 7 + 1$ Steve Wilson, 6/23Lawrence, KS 1089 (3.6) $\dfrac{5! + 7 - 6}{.\overline{1}}$ Steve Wilson, 6/23Lawrence, KS 1091 (2.6) $\dfrac{6.1}{.\overline{5}\%} - 7$ Steve Wilson, 6/23Lawrence, KS 1092 (2.0) $156 \times 7$ Jonathan Frank, 4/23Rye, NY 1093 (2.2) $\dfrac{6 + 5}{1\%} - 7$ Steve Wilson, 6/23Lawrence, KS 1094 (2.8) $\dfrac{ \dfrac{6}{.\overline{1}} + .7}{5\%}$ Steve Wilson, 6/23Lawrence, KS 1095 (2.6) $\dfrac{ \dfrac{7}{6\%} + 5}{.\overline{1}}$ Steve Wilson, 6/23Lawrence, KS 1097 (2.6) $\dfrac{6}{.\overline{5}\%} + 17$ Steve Wilson, 6/23Lawrence, KS 1098 (3.6) $6 \times \left( 5! + \dfrac{7}{.\overline{1}} \right)$ Steve Wilson, 6/23Lawrence, KS 1100 (2.2) $\dfrac{71 - 5}{6\%}$ Steve Wilson, 6/23Lawrence, KS 1101 (2.6) $\dfrac{7}{.\overline{6}\%} + 51$ Steve Wilson, 6/23Lawrence, KS 1104 (3.4) $6! \times 1.7 - 5!$ Steve Wilson, 6/23Lawrence, KS 1105 (2.0) $17 \times 65$ Jonathan Frank, 4/23Rye, NY 1107 (2.2) $\dfrac{6 + 5}{1\%} + 7$ Steve Wilson, 6/23Lawrence, KS 1110 (2.8) $\dfrac{7.5 - .1}{.\overline{6}\%}$ Steve Wilson, 6/23Lawrence, KS 1112 (2.8) $\dfrac{6.1\overline{7}}{.\overline{5}\%}$ Steve Wilson, 6/23Lawrence, KS 1113 (3.4) $6! \times 1.\overline{5} - 7$ Steve Wilson, 7/23Lawrence, KS 1116 (2.6) $(1 - 7\%) \times \dfrac{6}{.5\%}$ Steve Wilson, 6/23Lawrence, KS 1120 (3.4) $\dfrac{6 + 1}{7\pmf} + 5!$ Steve Wilson, 6/23Lawrence, KS 1122 (2.6) $6 \times \left( \dfrac{1}{.\overline{5}\%} + 7 \right)$ Steve Wilson, 6/23Lawrence, KS 1124 (2.6) $\dfrac{7.5}{.\overline{6}\%} - 1$ Steve Wilson, 6/23Lawrence, KS 1125 (2.6) $\dfrac{75}{.\overline{6} \times .1}$ Jonathan Frank, 4/23Rye, NY 1126 (2.6) $\dfrac{7.5}{.\overline{6}\%} + 1$ Steve Wilson, 6/23Lawrence, KS 1127 (3.6) $\dfrac{5! + 6}{.\overline{1}} - 7$ Steve Wilson, 6/23Lawrence, KS 1129 (2.4) $\dfrac{6}{.5\%} - 71$ Steve Wilson, 6/23Lawrence, KS 1130 (2.4) $\dfrac{ \dfrac{6}{5\%} - 7}{.1}$ Steve Wilson, 6/23Lawrence, KS 1133 (3.4) $\dfrac{5!}{.1} - 67$ Steve Wilson, 6/23Lawrence, KS 1134 (2.8) $\dfrac{6 + 1 - .7}{.\overline{5}\%}$ Steve Wilson, 6/23Lawrence, KS 1136 (3.4) $\dfrac{5! - 7}{.1} + 6$ Steve Wilson, 6/23Lawrence, KS 1137 (2.8) $\dfrac{6}{.5\%} - \dfrac{7}{.\overline{1}}$ Steve Wilson, 6/23Lawrence, KS 1140 (2.0) $76 \times 15$ Jonathan Frank, 4/23Rye, NY 1141 (3.6) $\dfrac{5! + 6}{.\overline{1}} + 7$ Steve Wilson, 6/23Lawrence, KS 1143 (2.6) $\dfrac{ \dfrac{6}{5\%} + 7}{.\overline{1}}$ Steve Wilson, 6/23Lawrence, KS 1145 (2.6) $\dfrac{7 - .1}{.6\%} - 5$ Steve Wilson, 6/23Lawrence, KS 1146 (3.2) $(5! + 71) \times 6$ Steve Wilson, 6/23Lawrence, KS 1147 (3.4) $\dfrac{5! - 6}{.1} + 7$ Steve Wilson, 6/23Lawrence, KS 1149 (3.6) $\dfrac{5! + 7}{.\overline{1}} + 6$ Steve Wilson, 6/23Lawrence, KS 1150 (2.8) $\dfrac{ \dfrac{6}{.\overline{5}} + .7}{1\%}$ Steve Wilson, 6/23Lawrence, KS 1151 (2.6) $\dfrac{6}{.\overline{5}\%} + 71$ Steve Wilson, 6/23Lawrence, KS 1152 (2.8) $\dfrac{7 - .6}{.\overline{5}\%} \times 1$ Steve Wilson, 6/23Lawrence, KS 1153 (2.8) $\dfrac{7 - .6}{.\overline{5}\%} + 1$ Steve Wilson, 6/23Lawrence, KS 1155 (2.0) $165 \times 7$ Jonathan Frank, 4/23Rye, NY 1156 (3.6) $\dfrac{5!}{.\overline{1}} + 76$ Steve Wilson, 6/23Lawrence, KS 1158 (2.4) $6 \times \left( \dfrac{1}{.5\%} - 7 \right)$ Steve Wilson, 6/23Lawrence, KS 1160 (2.6) $\dfrac{1 - 7 \times 6\%}{5\%\%}$ Steve Wilson, 6/23Lawrence, KS 1166 (2.6) $\dfrac{6 - .17}{.5\%}$ Steve Wilson, 6/23Lawrence, KS 1167 (2.6) $\dfrac{7 + \dfrac{1\%}{5}}{.6\%}$ Steve Wilson, 6/23Lawrence, KS 1170 (2.2) $\dfrac{6.7 + 5}{1\%}$ Steve Wilson, 6/23Lawrence, KS 1173 (2.6) $\dfrac{6 - .1}{.5\%} - 7$ Steve Wilson, 6/23Lawrence, KS 1174 (2.6) $\dfrac{7 + 5\%}{.6\%} - 1$ Steve Wilson, 6/23Lawrence, KS 1175 (2.4) $\dfrac{\dfrac{7}{1\%} + 5}{.6}$ Steve Wilson, 6/23Lawrence, KS 1176 (2.6) $\dfrac{7 + 5\%}{.6\%} + 1$ Steve Wilson, 6/23Lawrence, KS 1183 (2.4) $\dfrac{6}{.5\%} - 17$ Steve Wilson, 6/23Lawrence, KS 1184 (2.6) $\dfrac{6 - (7 + 1)\%}{.5\%}$ Steve Wilson, 6/23Lawrence, KS 1185 (2.6) $\dfrac{6 - 7\%}{.5\%} - 1$ Steve Wilson, 6/23Lawrence, KS 1186 (2.4) $\dfrac{\dfrac{6}{1\%} - 7}{.5}$ Steve Wilson, 6/23Lawrence, KS 1187 (2.6) $\dfrac{6 - 7\%}{.5\%} + 1$ Steve Wilson, 6/23Lawrence, KS 1188 (2.6) $\dfrac{6 - (7 - 1)\%}{.5\%}$ Steve Wilson, 6/23Lawrence, KS 1190 (3.4) $\dfrac{5! - 7 + 6}{.1}$ Steve Wilson, 6/23Lawrence, KS 1191 (2.6) $\dfrac{6 - 1\%}{.5\%} - 7$ Steve Wilson, 6/23Lawrence, KS 1192 (2.4) $\dfrac{6}{.5\%} - 7 - 1$ Steve Wilson, 6/23Lawrence, KS 1193 (2.4) $\dfrac{1}{.5\%} \times 6 - 7$ Jonathan Frank, 4/23Rye, NY 1194 (2.2) $\dfrac{7 + 5}{1\%} - 6$ Steve Wilson, 6/23Lawrence, KS 1195 (2.6) $\dfrac{6 + 1\%}{.5\%} - 7$ Steve Wilson, 6/23Lawrence, KS 1197 (3.6) $\dfrac{5! + 7 + 6}{.\overline{1}}$ Steve Wilson, 6/23Lawrence, KS 1198 (4.8) $\dfrac{5!}{.1} + \log((7 - 6)\%)$ Steve Wilson, 7/23Lawrence, KS 1199 (2.6) $\dfrac{7}{.\overline{5}\%} - 61$ Steve Wilson, 6/23Lawrence, KS 1200 (2.0) $75 \times 16$ Steve Wilson, 6/23Lawrence, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+)