Integermania!

Largest Four Digits

Using one copy each of the digits 6, 7, 8, and 9, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400), Page 2 (401+).

  1 (1.0)
$(9 - 8) \times (7 - 6)$
Steve Wilson, 6/14
Lawrence, KS
2 (1.0)
$9 - 8 + 7 - 6$
Steve Wilson, 6/14
Lawrence, KS
3 (1.0)
$(9 - 6) \times (8 - 7)$
Steve Wilson, 6/14
Lawrence, KS
4 (1.0)
$9 + 8 - 7 - 6$
Steve Wilson, 6/14
Lawrence, KS
5 (1.0)
$8 - \dfrac{6}{9 - 7}$
Steve Wilson, 6/14
Lawrence, KS
6 (2.2)
$(9 + 8 - 7) \times .6$
Paolo Pellegrini, 8/14
Martina Franca, Italy
7 (1.0)
$\dfrac{8 + 6}{9 - 7}$
Paolo Pellegrini, 8/14
Martina Franca, Italy
8 (1.0)
$6 + \dfrac{9 + 7}{8}$
Paolo Pellegrini, 8/14
Martina Franca, Italy
9 (2.0)
$78 - 69$
Anthony Alvano, 6/14
Shawnee, KS
10 (1.0)
$8 \times (9 - 7) - 6$
Anthony Alvano, 6/14
Shawnee, KS
 
  11 (1.0)
$9 + \dfrac{8 + 6}{7}$
Steve Wilson, 8/14
Lawrence, KS
12 (1.0)
$8 + 6 - 9 + 7$
Anthony Alvano, 6/14
Shawnee, KS
13 (1.0)
$(6 + 7) \times (9 - 8)$
Anthony Alvano, 6/14
Shawnee, KS
14 (1.0)
$9 - 8 + 7 + 6$
Blake Goldstein, 7/14
Leawood, KS
15 (1.0)
$(9 + 6) \times (8 - 7)$
Anthony Alvano, 7/14
Shawnee, KS
16 (1.0)
$9 + 8 - 7 + 6$
Anthony Alvano, 7/14
Shawnee, KS
17 (1.0)
$(9 + 8) \times (7 - 6)$
Blake Goldstein, 7/14
Leawood, KS
18 (1.0)
$9 + 8 + 7 - 6$
Blake Goldstein, 7/14
Leawood, KS
19 (1.0)
$\dfrac{9 \times 8}{6} + 7$
Anthony Alvano, 7/14
Shawnee, KS
20 (1.0)
$6 \times (9 - 7) + 8$
Steve Wilson, 8/14
Lawrence, KS
  21 (2.2)
$(8.\overline{9} - 6) \times 7$
Paolo Pellegrini, 8/14
Martina Franca, Italy
22 (1.0)
$8 \times (9 - 7) + 6$
Paolo Pellegrini, 8/14
Martina Franca, Italy
23 (1.0)
$7 \times (8 - 6) + 9$
Steve Wilson, 9/14
Lawrence, KS
24 (1.0)
$\dfrac{8 \times 6}{9 - 7}$
Steve Wilson, 9/14
Lawrence, KS
25 (1.0)
$6 \times 7 - 8 - 9$
Kenneth Chapman, 8/14
Santa Paula, CA
26 (2.0)
$\dfrac{78}{9 - 6}$
Steve Wilson, 10/14
Lawrence, KS
27 (2.2)
$\dfrac{6}{8 - \dfrac{7}{.9}}$
Steve Wilson, 10/14
Lawrence, KS
28 (1.0)
$(8 + 6) \times (9 - 7)$
Kenneth Chapman, 8/14
Santa Paula, CA
29 (1.0)
$7 \times (9 - 6) + 8$
Steve Wilson, 9/14
Lawrence, KS
30 (1.0)
$9 + 8 + 7 + 6$
Anthony Alvano, 7/14
Shawnee, KS
  31 (1.0)
$8 \times (9 - 6) + 7$
Ralph Jeffords, 8/14
Centreville, VA
32 (1.0)
$8 \times 6 - 9 - 7$
Kenneth Chapman, 8/14
Santa Paula, CA
33 (2.0)
$87 - 6 \times 9$
Steve Wilson, 10/14
Lawrence, KS
34 (2.0)
$\dfrac{68}{9 - 7}$
Steve Wilson, 10/14
Lawrence, KS
35 (1.0)
$7 \times (6 + 8 - 9)$
Kenneth Chapman, 9/14
Santa Paula, CA
36 (1.0)
$6 \times (7 + 8 - 9)$
Kenneth Chapman, 8/14
Santa Paula, CA
37 (2.4)
$9 \times 7 \times .6 - .8$
Steve Wilson, 10/14
Lawrence, KS
38 (2.4)
$\dfrac{6}{.9 - .7} + 8$
Ralph Jeffords, 8/14
Centreville, VA
39 (1.0)
$9 \times 6 - 8 - 7$
Kenneth Chapman, 8/14
Santa Paula, CA
40 (2.0)
$96 - 8 \times 7$
Steve Wilson, 7/14
Lawrence, KS
  41 (1.0)
$6 \times 7 + 8 - 9$
Kenneth Chapman, 9/14
Santa Paula, CA
42 (1.0)
$6 \times 7 \times (9 - 8)$
Steve Wilson, 11/14
Lawrence, KS
43 (1.0)
$6 \times 7 + 9 - 8$
Kenneth Chapman, 9/14
Santa Paula, CA
44 (1.0)
$8 \times \left( 7 - \dfrac96 \right)$
Steve Wilson, 11/14
Lawrence, KS
45 (1.0)
$9 \times (6 + 7 - 8)$
Steve Wilson, 11/14
Lawrence, KS
46 (1.0)
$6 \times 8 + 7 - 9$
Kenneth Chapman, 9/14
Santa Paula, CA
47 (2.0)
$89 - 6 \times 7$
Steve Wilson, 11/14
Lawrence, KS
48 (1.0)
$6 \times (9 - 8 + 7)$
Steve Wilson, 11/14
Lawrence, KS
49 (1.0)
$7 \times 9 - 6 - 8$
Kenneth Chapman, 9/14
Santa Paula, CA
50 (1.0)
$8 \times 6 + 9 - 7$
Steve Wilson, 7/14
Lawrence, KS
  51 (1.0)
$9 \times \left( 7 - \dfrac86 \right)$
Ralph Jeffords, 12/14
Centreville, VA
52 (2.0)
$78 \times \dfrac69$
Steve Wilson, 12/14
Lawrence, KS
53 (1.0)
$7 \times 8 - 9 + 6$
Kenneth Chapman, 11/14
Santa Paula, CA
54 (1.0)
$6 \times 9 \times (8 - 7)$
Kenneth Chapman, 11/14
Santa Paula, CA
55 (1.0)
$6 \times 9 + 8 - 7$
Kenneth Chapman, 11/14
Santa Paula, CA
56 (2.0)
$98 - 7 \times 6$
Ralph Jeffords, 10/14
Centreville, VA
57 (2.2)
$8.\overline{9} \times 7 - 6$
Ralph Jeffords, 10/14
Centreville, VA
58 (2.0)
$87 \times \dfrac69$
Steve Wilson, 12/14
Lawrence, KS
59 (1.0)
$6 \times 7 + 8 + 9$
Kenneth Chapman, 11/14
Santa Paula, CA
60 (1.0)
$6 \times (9 + 8 - 7)$
Steve Wilson, 7/14
Lawrence, KS
  61 (1.0)
$7 \times 9 + 6 - 8$
Kenneth Chapman, 10/14
Santa Paula, CA
62 (2.2)
$68.\overline{9} - 7$
Ralph Jeffords, 10/14
Centreville, VA
63 (1.0)
$9 \times (6 - 7 + 8)$
Kenneth Chapman, 12/14
Santa Paula, CA
64 (1.0)
$6 \times 8 + 7 + 9$
Kenneth Chapman, 12/14
Santa Paula, CA
65 (1.0)
$9 \times 7 + 8 - 6$
Blake Goldstein, 7/14
Leawood, KS
66 (2.0)
$67 - 9 + 8$
Ralph Jeffords, 10/14
Centreville, VA
67 (2.0)
$67 \times (9 - 8)$
Kenneth Chapman, 12/14
Santa Paula, CA
68 (1.0)
$8 \times \left( 7 + \dfrac96 \right)$
Kenneth Chapman, 1/15
Santa Paula, CA
69 (1.0)
$6 \times 9 + 7 + 8$
Kenneth Chapman, 12/14
Santa Paula, CA
70 (2.0)
$86 - 9 - 7$
Steve Wilson, 7/14
Lawrence, KS
  71 (1.0)
$7 \times 8 + 9 + 6$
Kenneth Chapman, 10/14
Santa Paula, CA
72 (1.0)
$9 \times 8 \times (7 - 6)$
Steve Wilson, 12/14
Lawrence, KS
73 (1.0)
$9 \times 8 + 7 - 6$
Steve Wilson, 12/14
Lawrence, KS
74 (2.4)
$67 + 8 - .\overline{9}$
Ralph Jeffords, 11/14
Centreville, VA
75 (1.0)
$9 \times \left( 7 + \dfrac86 \right)$
Steve Wilson, 12/14
Lawrence, KS
76 (2.0)
$76 \times (9 - 8)$
Ralph Jeffords, 11/14
Centreville, VA
77 (1.0)
$7 \times 9 + 6 + 8$
Kenneth Chapman, 1/15
Santa Paula, CA
78 (2.2)
$86 - 7.\overline{9}$
Ralph Jeffords, 11/14
Centreville, VA
79 (2.4)
$86 \times .\overline{9} - 7$
Ralph Jeffords, 11/14
Centreville, VA
80 (1.0)
$8 \times (9 + 7 - 6)$
Steve Wilson, 7/14
Lawrence, KS
  81 (1.0)
$9 \times (8 + 7 - 6)$
Kenneth Chapman, 10/14
Santa Paula, CA
82 (2.2)
$87.\overline{9} - 6$
Ralph Jeffords, 12/14
Centreville, VA
83 (2.0)
$97 - 8 - 6$
Ralph Jeffords, 12/14
Centreville, VA
84 (1.0)
$7 \times 8 \times \dfrac96$
Ralph Jeffords, 12/14
Centreville, VA
85 (1.0)
$8 \times 9 + 6 + 7$
Kenneth Chapman, 1/15
Santa Paula, CA
86 (2.2)
$\dfrac{76}{.8} - 9$
Kenneth Chapman, 1/15
Santa Paula, CA
87 (2.6)
$\dfrac{6 + 8.\overline{9}\%}{7\%}$
Steve Wilson, 1/15
Lawrence, KS
88 (1.0)
$(7 + 9) \times 6 - 8$
Ralph Jeffords, 3/15
Centreville, VA
89 (1.0)
$(6 + 8) \times 7 - 9$
Ralph Jeffords, 1/15
Centreville, VA
90 (2.0)
$87 + 9 - 6$
Steve Wilson, 8/14
Lawrence, KS
  91 (2.2)
$\dfrac{6}{8\%} + 9 + 7$
Steve Wilson, 3/15
Lawrence, KS
92 (2.4)
$87 + 6 - .\overline{9}$
Ralph Jeffords, 2/15
Centreville, VA
93 (2.0)
$76 + 8 + 9$
Ralph Jeffords, 1/15
Centreville, VA
94 (2.2)
$87 + 6.\overline{9}$
Ralph Jeffords, 2/15
Centreville, VA
95 (1.0)
$(6 + 7) \times 8 - 9$
Ralph Jeffords, 1/15
Centreville, VA
96 (1.0)
$6 \times 8 \times (9 - 7)$
Steve Wilson, 3/15
Lawrence, KS
97 (1.0)
$(6 + 9) \times 7 - 8$
Steve Wilson, 3/15
Lawrence, KS
98 (2.0)
$98 \times (7 - 6)$
Steve Wilson, 3/15
Lawrence, KS
99 (1.0)
$(7 + 8) \times 6 + 9$
Ralph Jeffords, 1/15
Centreville, VA
100 (2.2)
$\dfrac{8 + 7 - 6}{9\%}$
Steve Wilson, 8/14
Lawrence, KS
  101 (2.4)
$\dfrac{9 \times 8}{.\overline{6}} - 7$
Ralph Jeffords, 2/15
Centreville, VA
102 (2.0)
$87 + 6 + 9$
Ralph Jeffords, 2/15
Centreville, VA
103 (2.4)
$(6 + 7) \times 8 - .\overline{9}$
Ralph Jeffords, 4/15
Centreville, VA
104 (1.0)
$(7 + 9) \times 6 + 8$
Ralph Jeffords, 3/15
Centreville, VA
105 (2.2)
$7 \times (6 + 8.\overline{9})$
Steve Wilson, 4/15
Lawrence, KS
106 (2.4)
$\dfrac{7.\overline{9}}{8\%} + 6$
Steve Wilson, 4/15
Lawrence, KS
107 (1.0)
$(6 + 8) \times 7 + 9$
Ralph Jeffords, 4/15
Centreville, VA
108 (2.2)
$\dfrac{9}{\left( 7 + \dfrac86 \right)\%}$
Steve Wilson, 4/15
Lawrence, KS
109 (1.0)
$(6 + 7) \times 9 - 8$
Ralph Jeffords, 4/15
Centreville, VA
110 (1.0)
$8 \times 7 + 9 \times 6$
Steve Wilson, 8/14
Lawrence, KS
  111 (1.0)
$6 \times 8 + 7 \times 9$
Ralph Jeffords, 3/15
Centreville, VA
112 (2.2)
$(7.\overline{9} + 6) \times 8$
Steve Wilson, 4/15
Lawrence, KS
113 (1.0)
$(9 + 8) \times 7 - 6$
Sarah White, 10/14
Overland Park, KS
114 (1.0)
$9 \times 8 + 7 \times 6$
Alex Hwang, 1/15
Overland Park, KS
115 (2.2)
$\dfrac{78 - 9}{.6}$
Ralph Jeffords, 4/15
Centreville, VA
116 (2.4)
$\dfrac{7 - 6}{.8\%} - 9$
Steve Wilson, 4/15
Lawrence, KS
117 (2.0)
$78 \times \dfrac96$
Sarah White, 10/14
Overland Park, KS
118 (2.6)
$\dfrac{9 - .8 + 6\%}{7\%}$
Steve Wilson, 10/15
Lawrence, KS
119 (1.0)
$(6 + 8) \times 9 - 7$
Ralph Jeffords, 5/15
Centreville, VA
120 (2.2)
$(7 + 9) \times \dfrac{6}{.8}$
Steve Wilson, 9/14
Lawrence, KS
  121 (2.2)
$\dfrac{78}{.6} - 9$
Kenneth Chapman, 2/15
Santa Paula, CA
122 (1.0)
$(7 + 9) \times 8 - 6$
Kenneth Chapman, 5/15
Santa Paula, CA
123 (2.4)
$\dfrac{89 - 7}{.\overline{6}}$
Ralph Jeffords, 6/15
Centreville, VA
124 (2.8)
$\dfrac{7 - 6}{.8\%} - .\overline{9}$
Ralph Jeffords, 6/15
Centreville, VA
125 (1.0)
$(6 + 7) \times 9 + 8$
Ralph Jeffords, 4/15
Centreville, VA
126 (1.0)
$7 \times 9 \times (8 - 6)$
Kenneth Chapman, 3/15
Santa Paula, CA
127 (1.0)
$(6 + 9) \times 8 + 7$
Kenneth Chapman, 5/15
Santa Paula, CA
128 (2.0)
$\dfrac{896}{7}$
Kenneth Chapman, 3/15
Santa Paula, CA
129 (1.0)
$(7 + 8) \times 9 - 6$
Kenneth Chapman, 5/15
Santa Paula, CA
130 (2.2)
$\dfrac{87 - 9}{.6}$
Steve Wilson, 9/14
Lawrence, KS
  131 (2.0)
$7 \times 9 + 68$
Ralph Jeffords, 7/15
Centreville, VA
132 (2.0)
$6 \times 9 + 78$
Ralph Jeffords, 7/15
Centreville, VA
133 (1.0)
$(6 + 8) \times 9 + 7$
Ralph Jeffords, 5/15
Centreville, VA
134 (1.0)
$(7 + 9) \times 8 + 6$
Ralph Jeffords, 5/15
Centreville, VA
135 (2.2)
$\dfrac{9}{6\%} - 8 - 7$
Kenneth Chapman, 4/15
Santa Paula, CA
136 (2.0)
$68 \times (9 - 7)$
Kenneth Chapman, 4/15
Santa Paula, CA
137 (2.4)
$\dfrac{9 - .78}{6\%}$
Ralph Jeffords, 6/15
Centreville, VA
138 (2.2)
$\dfrac{6}{8\%} + 7 \times 9$
Kenneth Chapman, 4/15
Santa Paula, CA
139 (2.0)
$8 \times 9 + 67$
Ralph Jeffords, 7/15
Centreville, VA
140 (2.0)
$6 \times 7 + 98$
Ralph Jeffords, 7/15
Centreville, VA
  141 (1.0)
$(7 + 8) \times 9 + 6$
Kenneth Chapman, 5/15
Santa Paula, CA
142 (2.8)
$\dfrac{9 - 8 - .6\%}{.7\%}$
Steve Wilson, 10/15
Lawrence, KS
143 (2.4)
$\dfrac{8.\overline{9}}{6\%} - 7$
Ralph Jeffords, 9/15
Centreville, VA
144 (1.0)
$6 \times (7 + 8 + 9)$
Kenneth Chapman, 6/15
Santa Paula, CA
145 (2.0)
$97 + 8 \times 6$
Carlos Perez, 4/15
Overland Park, KS
146 (2.2)
$\dfrac{98}{.7} + 6$
Kenneth Chapman, 5/15
Santa Paula, CA
147 (2.0)
$79 + 68$
Andreina Lugo Parra, 3/15
Olathe, KS
148 (2.0)
$8 \times 9 + 76$
Ralph Jeffords, 7/15
Centreville, VA
149 (2.0)
$86 + 7 \times 9$
Ralph Jeffords, 9/15
Centreville, VA
150 (2.2)
$(9 - 7) \times \dfrac{6}{8\%}$
Steve Wilson, 1/15
Lawrence, KS
  151 (2.2)
$\dfrac{9}{6\%} + 8 - 7$
Ralph Jeffords, 9/15
Centreville, VA
152 (2.0)
$96 + 8 \times 7$
Alex Hwang, 3/15
Overland Park, KS
153 (2.6)
$\dfrac{8}{(6 - .\overline{9})\%} - 7$
Steve Wilson, 10/15
Lawrence, KS
154 (2.2)
$79 + \dfrac{6}{8\%}$
Steve Wilson, 9/15
Lawrence, KS
155 (2.4)
$\dfrac{9 \times .6 + 7}{8\%}$
Steve Wilson, 9/15
Lawrence, KS
156 (2.0)
$89 + 67$
Sarah White, 10/14
Overland Park, KS
157 (2.4)
$\dfrac{8.\overline{9}}{6\%} + 7$
Steve Wilson, 9/15
Lawrence, KS
158 (2.0)
$79 \times (8 - 6)$
Steve Wilson, 9/15
Lawrence, KS
159 (2.6)
$\dfrac{8-7}{.\overline{6}\%} + 9$
Steve Wilson, 9/15
Lawrence, KS
160 (2.2)
$\dfrac{89 + 7}{.6}$
Steve Wilson, 1/15
Lawrence, KS
  161 (1.0)
$7 \times (6 + 8 + 9)$
Kenneth Chapman, 6/15
Santa Paula, CA
162 (2.4)
$(8 + 6) \times \dfrac{9}{.\overline{7}}$
Steve Wilson, 10/15
Lawrence, KS
163 (2.0)
$\dfrac{978}{6}$
Steve Wilson, 10/15
Lawrence, KS
164 (2.4)
$8 \times \left( \dfrac{9}{.\overline{6}} + 7 \right)$
Steve Wilson, 11/15
Lawrence, KS
165 (2.0)
$97 + 68$
Alex Hwang, 1/15
Overland Park, KS
166 (2.4)
$\dfrac{8 + 7 - 6\%}{9\%}$
Steve Wilson, 11/15
Lawrence, KS
167 (2.6)
$\dfrac{8}{(6 - .\overline{9})\%} + 7$
Steve Wilson, 11/15
Lawrence, KS
168 (1.0)
$7 \times 8 \times (9 - 6)$
Alex Hwang, 2/15
Overland Park, KS
169 (3.2)
$(7 + 6)^{ \sqrt[\sqrt{9}]{8} }$
Steve Wilson, 3/15
Lawrence, KS
170 (2.4)
$\dfrac{9 + 8}{.7 - .6}$
Steve Wilson, 1/15
Lawrence, KS
 
  171 (2.4)
$9 \times \left( \dfrac{8}{.\overline{6}} + 7 \right)$
Steve Wilson, 11/15
Lawrence, KS
172 (2.0)
$86 \times (9 - 7)$
Kenneth Chapman, 11/15
Santa Paula, CA
173 (3.8)
$\dfrac{(8 - \sqrt{9})!}{.\overline{6}} - 7$
Steve Wilson, 5/16
Lawrence, KS
174 (2.0)
$98 + 76$
Andreina Lugo Parra, 3/15
Olathe, KS
175 (2.2)
$\dfrac{98 + 7}{.6}$
Steve Wilson, 11/15
Lawrence, KS
176 (1.0)
$8 \times (6 + 7 + 9)$
Kenneth Chapman, 6/15
Santa Paula, CA
177 (2.2)
$\left( \dfrac{7}{.6} + 8 \right) \times 9$
Steve Wilson, 1/16
Lawrence, KS
178 (3.4)
$\dfrac{6! - 8}{7 - \sqrt{9}}$
Steve Wilson, 5/16
Lawrence, KS
179 (3.4)
$\dfrac{.8 - .6}{.\overline{7}\%} - .\overline{9}$
Steve Wilson, 10/16
Lawrence, KS
180 (2.2)
$(8 + 6) \times \dfrac{9}{.7}$
Steve Wilson, 1/15
Lawrence, KS
  181 (3.4)
$\dfrac{.8 - .6}{.\overline{7}\%} + .\overline{9}$
Steve Wilson, 10/16
Lawrence, KS
182 (3.4)
$\dfrac{6! + 8}{7 - \sqrt{9}}$
Steve Wilson, 5/16
Lawrence, KS
183 (2.0)
$97 + 86$
Steve Wilson, 1/16
Lawrence, KS
184 (3.4)
$\dfrac{6!}{\sqrt{9}} - 7 \times 8$
Steve Wilson, 3/16
Lawrence, KS
185 (3.2)
$\dfrac{6}{(\sqrt{9})\%} - 8 - 7$
Steve Wilson, 11/16
Lawrence, KS
186 (3.2)
$6 \times (7 + 8 \times \sqrt{9})$
Steve Wilson, 10/16
Lawrence, KS
187 (3.6)
$\dfrac{(\sqrt{9})!}{6\%} + 87$
Steve Wilson, 5/16
Lawrence, KS
188 (3.4)
$\dfrac{6!}{7 - \sqrt{9}} + 8$
Steve Wilson, 9/16
Lawrence, KS
189 (1.0)
$(6 + 7 + 8) \times 9$
Andreina Lugo Parra, 2/15
Olathe, KS
190 (3.6)
$\dfrac{.8}{.\overline{6}\%} + \dfrac{.7}{.\overline{9}\%}$
Steve Wilson, 10/16
Lawrence, KS
  191 (2.2)
$\dfrac{8 + 6}{7\%} - 9$
Kenneth Chapman, 11/15
Santa Paula, CA
192 (2.4)
$(7 + 9) \times \dfrac{8}{.\overline{6}}$
Steve Wilson, 1/16
Lawrence, KS
193 (2.6)
$\dfrac{8 - 6}{.\overline{9}\%} - 7$
Steve Wilson, 1/16
Lawrence, KS
194 (2.0)
$97 \times (8 - 6)$
Steve Wilson, 3/16
Lawrence, KS
195 (2.6)
$\dfrac{78}{.\overline{9} - .6}$
Steve Wilson, 1/16
Lawrence, KS
196 (3.0)
$(8 + 6)^{9-7}$
Steve Wilson, 11/16
Lawrence, KS
197 (3.2)
$68 \times \sqrt{9} - 7$
Steve Wilson, 3/16
Lawrence, KS
198 (3.4)
$(7 - \sqrt{9})! \times 8 + 6$
Steve Wilson, 10/16
Lawrence, KS
199 (2.6)
$\dfrac{8 + 6}{7\%} - .\overline{9}$
Steve Wilson, 2/16
Lawrence, KS
200 (2.2)
$\dfrac{8}{(6 + 7 - 9)\%}$
Steve Wilson, 5/15
Lawrence, KS
  201 (2.6)
$\dfrac{8 + 6}{7\%} + .\overline{9}$
Steve Wilson, 2/16
Lawrence, KS
202 (3.2)
$\dfrac{.7}{(.\overline{9} - .\overline{6})\%} - 8$
Paolo Pellegrini, 3/17
Martina Franca, Italy
203 (2.8)
$\dfrac{.7}{.\overline{6}\%} + 98$
Steve Wilson, 2/16
Lawrence, KS
204 (3.4)
$\dfrac{7!}{8 \times \sqrt{9}} - 6$
Steve Wilson, 2/17
Lawrence, KS
205 (3.6)
$\dfrac{6 + (7 + 8)\%}{(\sqrt{9})\%}$
Steve Wilson, 12/16
Lawrence, KS
206 (2.2)
$\dfrac{9}{6\%} + 7 \times 8$
Kenneth Chapman, 1/16
Santa Paula, CA
207 (2.6)
$\dfrac{8 - 6}{.\overline{9}\%} + 7$
Steve Wilson, 2/16
Lawrence, KS
208 (3.4)
$\dfrac{\dfrac{7!}{8} - 6}{\sqrt{9}}$
Steve Wilson, 2/17
Lawrence, KS
209 (2.2)
$\dfrac{8 + 6}{7\%} + 9$
Steve Wilson, 2/16
Lawrence, KS
210 (2.6)
$\dfrac{7 \times 6}{.\overline{9} - .8}$
Steve Wilson, 5/15
Lawrence, KS
  211 (3.2)
$68 \times \sqrt{9} + 7$
Steve Wilson, 3/16
Lawrence, KS
212 (3.4)
$\dfrac{ \dfrac{7!}{8} + 6}{\sqrt{9}}$
Paolo Pellegrini, 3/17
Martina Franca, Italy
213 (2.8)
$\dfrac{.9}{.\overline{6}\%} + 78$
Steve Wilson, 4/16
Lawrence, KS
214 (3.4)
$\dfrac{6! - 78}{\sqrt{9}}$
Paolo Pellegrini, 3/17
Martina Franca, Italy
215 (3.2)
$\dfrac{6}{(\sqrt{9})\%} + 8 + 7$
Steve Wilson, 11/16
Lawrence, KS
216 (2.6)
$\dfrac{6}{(9 - 7 \times .\overline{8})\%}$
Steve Wilson, 4/16
Lawrence, KS
217 (2.8)
$\dfrac{.8}{.\overline{6}\%} + 97$
Steve Wilson, 4/16
Lawrence, KS
218 (3.2)
$\dfrac{.7}{(.\overline{9} - .\overline{6})\%} + 8$
Paolo Pellegrini, 3/17
Martina Franca, Italy
219 (2.6)
$\dfrac{9 - 7}{.\overline{8}\%} - 6$
Steve Wilson, 4/16
Lawrence, KS
220 (2.8)
$\dfrac{7 - 8 \times .6}{.\overline{9}\%}$
Steve Wilson, 5/15
Lawrence, KS
  221 (1.0)
$(6 + 7) \times (8 + 9)$
Kenneth Chapman, 6/15
Santa Paula, CA
222 (2.8)
$\dfrac{.9}{.\overline{6}\%} + 87$
Steve Wilson, 9/16
Lawrence, KS
223 (2.8)
$\dfrac{8 - 6 + .7\%}{.9\%}$
Steve Wilson, 4/16
Lawrence, KS
224 (1.0)
$(6 + 8) \times (7 + 9)$
Kenneth Chapman, 6/15
Santa Paula, CA
225 (1.0)
$(6 + 9) \times (7 + 8)$
Kenneth Chapman, 7/15
Santa Paula, CA
226 (3.2)
$\dfrac{678}{\sqrt{9}}$
Paolo Pellegrini, 3/17
Martina Franca, Italy
  228 (2.2)
$\dfrac{9}{6\%} + 78$
Kenneth Chapman, 2/16
Santa Paula, CA
  230 (2.6)
$\dfrac{8 - 6 + 7\%}{.9\%}$
Steve Wilson, 5/15
Lawrence, KS
  231 (2.6)
$\dfrac{9 - 7}{.\overline{8}\%} + 6$
Steve Wilson, 9/16
Lawrence, KS
    234 (2.0)
$78 \times (9 - 6)$
Kenneth Chapman, 1/16
Santa Paula, CA
235 (2.4)
$\dfrac{7 + 8 - .9}{6\%}$
Steve Wilson, 9/16
Lawrence, KS
236 (2.4)
$\dfrac{7 + 8\%}{(9 - 6)\%}$
Steve Wilson, 11/16
Lawrence, KS
237 (2.2)
$\dfrac{9}{6\%} + 87$
Kenneth Chapman, 2/16
Santa Paula, CA
  239 (3.4)
$\dfrac{6!}{\sqrt{9}} - 8 + 7$
Steve Wilson, 3/16
Lawrence, KS
240 (2.2)
$\dfrac{6}{.9 - \dfrac78}$
Steve Wilson, 11/16
Lawrence, KS
  241 (2.2)
$\dfrac{8 + 7}{6\%} - 9$
Kenneth Chapman, 1/16
Santa Paula, CA
242 (2.4)
$\dfrac{9 + 8 - 6\%}{7\%}$
Steve Wilson, 12/16
Lawrence, KS
243 (2.6)
$\dfrac{9 \times .6}{.8 - .\overline{7}}$
Steve Wilson, 12/16
Lawrence, KS
244 (2.4)
$\dfrac{9 - 7}{.8\%} - 6$
Steve Wilson, 12/16
Lawrence, KS
245 (3.4)
$7 \times \left(8 + \sqrt{\sqrt{9^6}} \right)$
Steve Wilson, 2/17
Lawrence, KS
246 (2.8)
$\dfrac{9 - .8}{.7 - .\overline{6}}$
Steve Wilson, 1/17
Lawrence, KS
    249 (2.6)
$\dfrac{7 + 8}{6\%} - .\overline{9}$
Steve Wilson, 1/17
Lawrence, KS
250 (2.6)
$\dfrac{.6}{(7 + 8 + 9)\%\%}$
Steve Wilson, 5/15
Lawrence, KS
  251 (2.6)
$\dfrac{7 + 8}{6\%} + .\overline{9}$
Steve Wilson, 1/17
Lawrence, KS
      255 (2.6)
$\dfrac{9.7 - 8}{.\overline{6}\%}$
Steve Wilson, 1/17
Lawrence, KS
256 (2.4)
$\dfrac{9 - 7}{.8\%} + 6$
Steve Wilson, 1/17
Lawrence, KS
257 (3.2)
$7^{\sqrt{9}} - 86$
Steve Wilson, 4/17
Lawrence, KS
  259 (2.2)
$\dfrac{7 + 8}{6\%} + 9$
Steve Wilson, 8/15
Lawrence, KS
260 (2.2)
$\dfrac{7.8}{(9 - 6)\%}$
Steve Wilson, 2/17
Lawrence, KS
  261 (2.0)
$87 \times (9 - 6)$
Kenneth Chapman, 1/16
Santa Paula, CA
262 (2.6)
$\dfrac{9}{.7 - .\overline{6}} - 8$
Steve Wilson, 2/17
Lawrence, KS
  264 (1.0)
$(6 \times 7 - 9) \times 8$
Kenneth Chapman, 8/15
Santa Paula, CA
265 (2.2)
$\dfrac{8.9 + 7}{6\%}$
Steve Wilson, 3/17
Lawrence, KS
  267 (2.6)
$\dfrac{8.9}{.7 - .\overline{6}}$
Steve Wilson, 3/17
Lawrence, KS
268 (2.4)
$\dfrac{9 + 7 + 8\%}{6\%}$
Steve Wilson, 3/17
Lawrence, KS
269 (2.4)
$\dfrac{8 + 7\%}{(9 - 6)\%}$
Steve Wilson, 3/17
Lawrence, KS
270 (2.2)
$\dfrac{6}{.8 - \dfrac79}$
Steve Wilson, 6/15
Lawrence, KS
    272 (3.2)
$6^{\sqrt{9}} + 7 \times 8$
Niko Solstice, 8/17
Field of Wheat
273 (1.0)
$7 \times (6 \times 8 - 9)$
Kenneth Chapman, 7/15
Santa Paula, CA
  275 (2.2)
$\dfrac{9 + 7 + 6}{8\%}$
Steve Wilson, 3/17
Lawrence, KS
    278 (2.6)
$\dfrac{9}{.7 - .\overline{6}} + 8$
Steve Wilson, 4/17
Lawrence, KS
279 (2.6)
$\dfrac{6}{.8 - .\overline{7}} + 9$
Steve Wilson, 4/17
Lawrence, KS
280 (2.2)
$\dfrac{9 + 7.8}{6\%}$
Steve Wilson, 6/15
Lawrence, KS
  281 (7.2)
$8!! - 96 - 7$
Kenneth Chapman, 6/16
Santa Paula, CA
282 (1.0)
$6 \times (7 \times 8 - 9)$
Kenneth Chapman, 7/15
Santa Paula, CA
    285 (2.6)
$\dfrac{8.9 - 7}{.\overline{6}\%}$
Steve Wilson, 4/17
Lawrence, KS
  287 (2.8)
$\dfrac{8 - 6 + .9\%}{.7\%}$
Steve Wilson, 4/17
Lawrence, KS
  289 (3.2)
$\dfrac{867}{\sqrt{9}}$
Susan Vongphrachanh, 2/17
Kansas City, KS
290 (2.2)
$\dfrac{8.7}{(9 - 6)\%}$
Steve Wilson, 6/15
Lawrence, KS
                  299 (7.2)
$8!! - 76 - 9$
Kenneth Chapman, 6/16
Santa Paula, CA
300 (2.2)
$\dfrac{8 \times 6}{(9 + 7)\%}$
Steve Wilson, 6/15
Lawrence, KS
      303 (3.2)
$6^{\sqrt{9}} + 87$
Niko Solstice, 8/17
Field of Wheat
    306 (1.0)
$(6 \times 7 - 8) \times 9$
Steve Wilson, 6/15
Lawrence, KS
  308 (2.2)
$\dfrac{6}{(9 - 7)\%} + 8$
Steve Wilson, 12/16
Lawrence, KS
   
                    320 (2.6)
$\dfrac{6}{\left( \dfrac78 + .\overline{9} \right)\%}$
Steve Wilson, 7/15
Lawrence, KS
    322 (1.0)
$7 \times (6 \times 9 - 8)$
Kenneth Chapman, 7/15
Santa Paula, CA
      326 (7.2)
$8!! - 67 + 9$
Kenneth Chapman, 6/16
Santa Paula, CA
327 (1.0)
$6 \times 7 \times 8 - 9$
Alex Hwang, 4/15
Overland Park, KS
    330 (1.0)
$6 \times (7 \times 9 - 8)$
Kenneth Chapman, 7/15
Santa Paula, CA
          335 (2.4)
$6 \times 7 \times 8 - .\overline{9}$
Niko Solstice, 7/17
Field of Wheat
336 (2.4)
$7 \times 8 \times 9 \times .\overline{6}$
Niko Solstice, 7/17
Field of Wheat
337 (2.4)
$6 \times 7 \times 8 + .\overline{9}$
Niko Solstice, 7/17
Field of Wheat
    340 (2.2)
$\dfrac{6.8}{(9 - 7)\%}$
Steve Wilson, 7/15
Lawrence, KS
  341 (3.2)
$7^{\sqrt{9}} + 6 - 8$
Niko Solstice, 8/17
Field of Wheat
  343 (3.2)
$7^{8.\overline{9} - 6}$
Niko Solstice, 7/17
Field of Wheat
  345 (1.0)
$6 \times 7 \times 8 + 9$
Jaspreet Kaur, 5/15
Lenexa, KS
        350 (2.6)
$\dfrac{7 \times .\overline{9}}{(8 - 6)\%}$
Steve Wilson, 7/15
Lawrence, KS
              357 (3.2)
$7^{\sqrt{9}} + 6 + 8$
Niko Solstice, 8/17
Field of Wheat
    360 (2.2)
$\dfrac{9 \times 6}{(8 + 7)\%}$
Steve Wilson, 7/15
Lawrence, KS
                  369 (1.0)
$(6 \times 8 - 7) \times 9$
Kenneth Chapman, 8/15
Santa Paula, CA
370 (1.0)
$6 \times 7 \times 9 - 8$
Steve Wilson, 7/15
Lawrence, KS
            376 (1.0)
$(9 \times 6 - 7) \times 8$
Alex Hwang, 3/15
Overland Park, KS
  378 (2.2)
$6 \times 7 \times 8.\overline{9}$
Niko Solstice, 7/17
Field of Wheat
  380 (2.6)
$\dfrac{76}{.\overline{9}-.8}$
Steve Wilson, 8/15
Lawrence, KS
            386 (1.0)
$6 \times 9 \times 7 + 8$
Carlos Perez, 3/15
Overland Park, KS
      390 (1.0)
$(8 \times 9 - 7) \times 6$
Kenneth Chapman, 8/15
Santa Paula, CA
                  399 (1.0)
$7 \times (6 \times 8 + 9)$
Kenneth Chapman, 9/15
Santa Paula, CA
400 (2.2)
$\dfrac{7 + 8 + 9}{6\%}$
Steve Wilson, 8/15
Lawrence, KS

Page 1 (1-400), Page 2 (401+).