$\def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}}$

## Integermania!

#### Largest Four Digits

Using one copy each of the digits 6, 7, 8, and 9, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400), Page 2 (401+).

 1 (1.0) $(9 - 8) \times (7 - 6)$ Steve Wilson, 6/14Lawrence, KS 2 (1.0) $9 - 8 + 7 - 6$ Steve Wilson, 6/14Lawrence, KS 3 (1.0) $(9 - 6) \times (8 - 7)$ Steve Wilson, 6/14Lawrence, KS 4 (1.0) $9 + 8 - 7 - 6$ Steve Wilson, 6/14Lawrence, KS 5 (1.0) $8 - \dfrac{6}{9 - 7}$ Steve Wilson, 6/14Lawrence, KS 6 (2.2) $(9 + 8 - 7) \times .6$ Paolo Pellegrini, 8/14Martina Franca, Italy 7 (1.0) $\dfrac{8 + 6}{9 - 7}$ Paolo Pellegrini, 8/14Martina Franca, Italy 8 (1.0) $6 + \dfrac{9 + 7}{8}$ Paolo Pellegrini, 8/14Martina Franca, Italy 9 (2.0) $78 - 69$ Anthony Alvano, 6/14Shawnee, KS 10 (1.0) $8 \times (9 - 7) - 6$ Anthony Alvano, 6/14Shawnee, KS 11 (1.0) $9 + \dfrac{8 + 6}{7}$ Steve Wilson, 8/14Lawrence, KS 12 (1.0) $8 + 6 - 9 + 7$ Anthony Alvano, 6/14Shawnee, KS 13 (1.0) $(6 + 7) \times (9 - 8)$ Anthony Alvano, 6/14Shawnee, KS 14 (1.0) $9 - 8 + 7 + 6$ Blake Goldstein, 7/14Leawood, KS 15 (1.0) $(9 + 6) \times (8 - 7)$ Anthony Alvano, 7/14Shawnee, KS 16 (1.0) $9 + 8 - 7 + 6$ Anthony Alvano, 7/14Shawnee, KS 17 (1.0) $(9 + 8) \times (7 - 6)$ Blake Goldstein, 7/14Leawood, KS 18 (1.0) $9 + 8 + 7 - 6$ Blake Goldstein, 7/14Leawood, KS 19 (1.0) $\dfrac{9 \times 8}{6} + 7$ Anthony Alvano, 7/14Shawnee, KS 20 (1.0) $6 \times (9 - 7) + 8$ Steve Wilson, 8/14Lawrence, KS 21 (2.2) $(8.\overline{9} - 6) \times 7$ Paolo Pellegrini, 8/14Martina Franca, Italy 22 (1.0) $8 \times (9 - 7) + 6$ Paolo Pellegrini, 8/14Martina Franca, Italy 23 (1.0) $7 \times (8 - 6) + 9$ Steve Wilson, 9/14Lawrence, KS 24 (1.0) $\dfrac{8 \times 6}{9 - 7}$ Steve Wilson, 9/14Lawrence, KS 25 (1.0) $6 \times 7 - 8 - 9$ Kenneth Chapman, 8/14Santa Paula, CA 26 (2.0) $\dfrac{78}{9 - 6}$ Steve Wilson, 10/14Lawrence, KS 27 (2.2) $\dfrac{6}{8 - \dfrac{7}{.9}}$ Steve Wilson, 10/14Lawrence, KS 28 (1.0) $(8 + 6) \times (9 - 7)$ Kenneth Chapman, 8/14Santa Paula, CA 29 (1.0) $7 \times (9 - 6) + 8$ Steve Wilson, 9/14Lawrence, KS 30 (1.0) $9 + 8 + 7 + 6$ Anthony Alvano, 7/14Shawnee, KS 31 (1.0) $8 \times (9 - 6) + 7$ Ralph Jeffords, 8/14Centreville, VA 32 (1.0) $8 \times 6 - 9 - 7$ Kenneth Chapman, 8/14Santa Paula, CA 33 (2.0) $87 - 6 \times 9$ Steve Wilson, 10/14Lawrence, KS 34 (2.0) $\dfrac{68}{9 - 7}$ Steve Wilson, 10/14Lawrence, KS 35 (1.0) $7 \times (6 + 8 - 9)$ Kenneth Chapman, 9/14Santa Paula, CA 36 (1.0) $6 \times (7 + 8 - 9)$ Kenneth Chapman, 8/14Santa Paula, CA 37 (2.4) $9 \times 7 \times .6 - .8$ Steve Wilson, 10/14Lawrence, KS 38 (2.4) $\dfrac{6}{.9 - .7} + 8$ Ralph Jeffords, 8/14Centreville, VA 39 (1.0) $9 \times 6 - 8 - 7$ Kenneth Chapman, 8/14Santa Paula, CA 40 (2.0) $96 - 8 \times 7$ Steve Wilson, 7/14Lawrence, KS 41 (1.0) $6 \times 7 + 8 - 9$ Kenneth Chapman, 9/14Santa Paula, CA 42 (1.0) $6 \times 7 \times (9 - 8)$ Steve Wilson, 11/14Lawrence, KS 43 (1.0) $6 \times 7 + 9 - 8$ Kenneth Chapman, 9/14Santa Paula, CA 44 (1.0) $8 \times \left( 7 - \dfrac96 \right)$ Steve Wilson, 11/14Lawrence, KS 45 (1.0) $9 \times (6 + 7 - 8)$ Steve Wilson, 11/14Lawrence, KS 46 (1.0) $6 \times 8 + 7 - 9$ Kenneth Chapman, 9/14Santa Paula, CA 47 (2.0) $89 - 6 \times 7$ Steve Wilson, 11/14Lawrence, KS 48 (1.0) $6 \times (9 - 8 + 7)$ Steve Wilson, 11/14Lawrence, KS 49 (1.0) $7 \times 9 - 6 - 8$ Kenneth Chapman, 9/14Santa Paula, CA 50 (1.0) $8 \times 6 + 9 - 7$ Steve Wilson, 7/14Lawrence, KS 51 (1.0) $9 \times \left( 7 - \dfrac86 \right)$ Ralph Jeffords, 12/14Centreville, VA 52 (2.0) $78 \times \dfrac69$ Steve Wilson, 12/14Lawrence, KS 53 (1.0) $7 \times 8 - 9 + 6$ Kenneth Chapman, 11/14Santa Paula, CA 54 (1.0) $6 \times 9 \times (8 - 7)$ Kenneth Chapman, 11/14Santa Paula, CA 55 (1.0) $6 \times 9 + 8 - 7$ Kenneth Chapman, 11/14Santa Paula, CA 56 (2.0) $98 - 7 \times 6$ Ralph Jeffords, 10/14Centreville, VA 57 (2.2) $8.\overline{9} \times 7 - 6$ Ralph Jeffords, 10/14Centreville, VA 58 (2.0) $87 \times \dfrac69$ Steve Wilson, 12/14Lawrence, KS 59 (1.0) $6 \times 7 + 8 + 9$ Kenneth Chapman, 11/14Santa Paula, CA 60 (1.0) $6 \times (9 + 8 - 7)$ Steve Wilson, 7/14Lawrence, KS 61 (1.0) $7 \times 9 + 6 - 8$ Kenneth Chapman, 10/14Santa Paula, CA 62 (2.2) $68.\overline{9} - 7$ Ralph Jeffords, 10/14Centreville, VA 63 (1.0) $9 \times (6 - 7 + 8)$ Kenneth Chapman, 12/14Santa Paula, CA 64 (1.0) $6 \times 8 + 7 + 9$ Kenneth Chapman, 12/14Santa Paula, CA 65 (1.0) $9 \times 7 + 8 - 6$ Blake Goldstein, 7/14Leawood, KS 66 (2.0) $67 - 9 + 8$ Ralph Jeffords, 10/14Centreville, VA 67 (2.0) $67 \times (9 - 8)$ Kenneth Chapman, 12/14Santa Paula, CA 68 (1.0) $8 \times \left( 7 + \dfrac96 \right)$ Kenneth Chapman, 1/15Santa Paula, CA 69 (1.0) $6 \times 9 + 7 + 8$ Kenneth Chapman, 12/14Santa Paula, CA 70 (2.0) $86 - 9 - 7$ Steve Wilson, 7/14Lawrence, KS 71 (1.0) $7 \times 8 + 9 + 6$ Kenneth Chapman, 10/14Santa Paula, CA 72 (1.0) $9 \times 8 \times (7 - 6)$ Steve Wilson, 12/14Lawrence, KS 73 (1.0) $9 \times 8 + 7 - 6$ Steve Wilson, 12/14Lawrence, KS 74 (2.4) $67 + 8 - .\overline{9}$ Ralph Jeffords, 11/14Centreville, VA 75 (1.0) $9 \times \left( 7 + \dfrac86 \right)$ Steve Wilson, 12/14Lawrence, KS 76 (2.0) $76 \times (9 - 8)$ Ralph Jeffords, 11/14Centreville, VA 77 (1.0) $7 \times 9 + 6 + 8$ Kenneth Chapman, 1/15Santa Paula, CA 78 (2.2) $86 - 7.\overline{9}$ Ralph Jeffords, 11/14Centreville, VA 79 (2.4) $86 \times .\overline{9} - 7$ Ralph Jeffords, 11/14Centreville, VA 80 (1.0) $8 \times (9 + 7 - 6)$ Steve Wilson, 7/14Lawrence, KS 81 (1.0) $9 \times (8 + 7 - 6)$ Kenneth Chapman, 10/14Santa Paula, CA 82 (2.2) $87.\overline{9} - 6$ Ralph Jeffords, 12/14Centreville, VA 83 (2.0) $97 - 8 - 6$ Ralph Jeffords, 12/14Centreville, VA 84 (1.0) $7 \times 8 \times \dfrac96$ Ralph Jeffords, 12/14Centreville, VA 85 (1.0) $8 \times 9 + 6 + 7$ Kenneth Chapman, 1/15Santa Paula, CA 86 (2.2) $\dfrac{76}{.8} - 9$ Kenneth Chapman, 1/15Santa Paula, CA 87 (2.6) $\dfrac{6 + 8.\overline{9}\%}{7\%}$ Steve Wilson, 1/15Lawrence, KS 88 (1.0) $(7 + 9) \times 6 - 8$ Ralph Jeffords, 3/15Centreville, VA 89 (1.0) $(6 + 8) \times 7 - 9$ Ralph Jeffords, 1/15Centreville, VA 90 (2.0) $87 + 9 - 6$ Steve Wilson, 8/14Lawrence, KS 91 (2.2) $\dfrac{6}{8\%} + 9 + 7$ Steve Wilson, 3/15Lawrence, KS 92 (2.4) $87 + 6 - .\overline{9}$ Ralph Jeffords, 2/15Centreville, VA 93 (2.0) $76 + 8 + 9$ Ralph Jeffords, 1/15Centreville, VA 94 (2.2) $87 + 6.\overline{9}$ Ralph Jeffords, 2/15Centreville, VA 95 (1.0) $(6 + 7) \times 8 - 9$ Ralph Jeffords, 1/15Centreville, VA 96 (1.0) $6 \times 8 \times (9 - 7)$ Steve Wilson, 3/15Lawrence, KS 97 (1.0) $(6 + 9) \times 7 - 8$ Steve Wilson, 3/15Lawrence, KS 98 (2.0) $98 \times (7 - 6)$ Steve Wilson, 3/15Lawrence, KS 99 (1.0) $(7 + 8) \times 6 + 9$ Ralph Jeffords, 1/15Centreville, VA 100 (2.2) $\dfrac{8 + 7 - 6}{9\%}$ Steve Wilson, 8/14Lawrence, KS 101 (2.4) $\dfrac{9 \times 8}{.\overline{6}} - 7$ Ralph Jeffords, 2/15Centreville, VA 102 (2.0) $87 + 6 + 9$ Ralph Jeffords, 2/15Centreville, VA 103 (2.4) $(6 + 7) \times 8 - .\overline{9}$ Ralph Jeffords, 4/15Centreville, VA 104 (1.0) $(7 + 9) \times 6 + 8$ Ralph Jeffords, 3/15Centreville, VA 105 (2.2) $7 \times (6 + 8.\overline{9})$ Steve Wilson, 4/15Lawrence, KS 106 (2.4) $\dfrac{7.\overline{9}}{8\%} + 6$ Steve Wilson, 4/15Lawrence, KS 107 (1.0) $(6 + 8) \times 7 + 9$ Ralph Jeffords, 4/15Centreville, VA 108 (2.2) $\dfrac{9}{\left( 7 + \dfrac86 \right)\%}$ Steve Wilson, 4/15Lawrence, KS 109 (1.0) $(6 + 7) \times 9 - 8$ Ralph Jeffords, 4/15Centreville, VA 110 (1.0) $8 \times 7 + 9 \times 6$ Steve Wilson, 8/14Lawrence, KS 111 (1.0) $6 \times 8 + 7 \times 9$ Ralph Jeffords, 3/15Centreville, VA 112 (2.2) $(7.\overline{9} + 6) \times 8$ Steve Wilson, 4/15Lawrence, KS 113 (1.0) $(9 + 8) \times 7 - 6$ Sarah White, 10/14Overland Park, KS 114 (1.0) $9 \times 8 + 7 \times 6$ Alex Hwang, 1/15Overland Park, KS 115 (2.2) $\dfrac{78 - 9}{.6}$ Ralph Jeffords, 4/15Centreville, VA 116 (2.4) $\dfrac{7 - 6}{.8\%} - 9$ Steve Wilson, 4/15Lawrence, KS 117 (2.0) $78 \times \dfrac96$ Sarah White, 10/14Overland Park, KS 118 (2.6) $\dfrac{9 - .8 + 6\%}{7\%}$ Steve Wilson, 10/15Lawrence, KS 119 (1.0) $(6 + 8) \times 9 - 7$ Ralph Jeffords, 5/15Centreville, VA 120 (2.2) $(7 + 9) \times \dfrac{6}{.8}$ Steve Wilson, 9/14Lawrence, KS 121 (2.2) $\dfrac{78}{.6} - 9$ Kenneth Chapman, 2/15Santa Paula, CA 122 (1.0) $(7 + 9) \times 8 - 6$ Kenneth Chapman, 5/15Santa Paula, CA 123 (2.4) $\dfrac{89 - 7}{.\overline{6}}$ Ralph Jeffords, 6/15Centreville, VA 124 (2.8) $\dfrac{7 - 6}{.8\%} - .\overline{9}$ Ralph Jeffords, 6/15Centreville, VA 125 (1.0) $(6 + 7) \times 9 + 8$ Ralph Jeffords, 4/15Centreville, VA 126 (1.0) $7 \times 9 \times (8 - 6)$ Kenneth Chapman, 3/15Santa Paula, CA 127 (1.0) $(6 + 9) \times 8 + 7$ Kenneth Chapman, 5/15Santa Paula, CA 128 (2.0) $\dfrac{896}{7}$ Kenneth Chapman, 3/15Santa Paula, CA 129 (1.0) $(7 + 8) \times 9 - 6$ Kenneth Chapman, 5/15Santa Paula, CA 130 (2.2) $\dfrac{87 - 9}{.6}$ Steve Wilson, 9/14Lawrence, KS 131 (2.0) $7 \times 9 + 68$ Ralph Jeffords, 7/15Centreville, VA 132 (2.0) $6 \times 9 + 78$ Ralph Jeffords, 7/15Centreville, VA 133 (1.0) $(6 + 8) \times 9 + 7$ Ralph Jeffords, 5/15Centreville, VA 134 (1.0) $(7 + 9) \times 8 + 6$ Ralph Jeffords, 5/15Centreville, VA 135 (2.2) $\dfrac{9}{6\%} - 8 - 7$ Kenneth Chapman, 4/15Santa Paula, CA 136 (2.0) $68 \times (9 - 7)$ Kenneth Chapman, 4/15Santa Paula, CA 137 (2.4) $\dfrac{9 - .78}{6\%}$ Ralph Jeffords, 6/15Centreville, VA 138 (2.2) $\dfrac{6}{8\%} + 7 \times 9$ Kenneth Chapman, 4/15Santa Paula, CA 139 (2.0) $8 \times 9 + 67$ Ralph Jeffords, 7/15Centreville, VA 140 (2.0) $6 \times 7 + 98$ Ralph Jeffords, 7/15Centreville, VA 141 (1.0) $(7 + 8) \times 9 + 6$ Kenneth Chapman, 5/15Santa Paula, CA 142 (2.8) $\dfrac{9 - 8 - .6\%}{.7\%}$ Steve Wilson, 10/15Lawrence, KS 143 (2.4) $\dfrac{8.\overline{9}}{6\%} - 7$ Ralph Jeffords, 9/15Centreville, VA 144 (1.0) $6 \times (7 + 8 + 9)$ Kenneth Chapman, 6/15Santa Paula, CA 145 (2.0) $97 + 8 \times 6$ Carlos Perez, 4/15Overland Park, KS 146 (2.2) $\dfrac{98}{.7} + 6$ Kenneth Chapman, 5/15Santa Paula, CA 147 (2.0) $79 + 68$ Andreina Lugo Parra, 3/15Olathe, KS 148 (2.0) $8 \times 9 + 76$ Ralph Jeffords, 7/15Centreville, VA 149 (2.0) $86 + 7 \times 9$ Ralph Jeffords, 9/15Centreville, VA 150 (2.2) $(9 - 7) \times \dfrac{6}{8\%}$ Steve Wilson, 1/15Lawrence, KS 151 (2.2) $\dfrac{9}{6\%} + 8 - 7$ Ralph Jeffords, 9/15Centreville, VA 152 (2.0) $96 + 8 \times 7$ Alex Hwang, 3/15Overland Park, KS 153 (2.6) $\dfrac{8}{(6 - .\overline{9})\%} - 7$ Steve Wilson, 10/15Lawrence, KS 154 (2.2) $79 + \dfrac{6}{8\%}$ Steve Wilson, 9/15Lawrence, KS 155 (2.4) $\dfrac{9 \times .6 + 7}{8\%}$ Steve Wilson, 9/15Lawrence, KS 156 (2.0) $89 + 67$ Sarah White, 10/14Overland Park, KS 157 (2.4) $\dfrac{8.\overline{9}}{6\%} + 7$ Steve Wilson, 9/15Lawrence, KS 158 (2.0) $79 \times (8 - 6)$ Steve Wilson, 9/15Lawrence, KS 159 (2.6) $\dfrac{8-7}{.\overline{6}\%} + 9$ Steve Wilson, 9/15Lawrence, KS 160 (2.2) $\dfrac{89 + 7}{.6}$ Steve Wilson, 1/15Lawrence, KS 161 (1.0) $7 \times (6 + 8 + 9)$ Kenneth Chapman, 6/15Santa Paula, CA 162 (2.4) $(8 + 6) \times \dfrac{9}{.\overline{7}}$ Steve Wilson, 10/15Lawrence, KS 163 (2.0) $\dfrac{978}{6}$ Steve Wilson, 10/15Lawrence, KS 164 (2.4) $8 \times \left( \dfrac{9}{.\overline{6}} + 7 \right)$ Steve Wilson, 11/15Lawrence, KS 165 (2.0) $97 + 68$ Alex Hwang, 1/15Overland Park, KS 166 (2.4) $\dfrac{8 + 7 - 6\%}{9\%}$ Steve Wilson, 11/15Lawrence, KS 167 (2.6) $\dfrac{8}{(6 - .\overline{9})\%} + 7$ Steve Wilson, 11/15Lawrence, KS 168 (1.0) $7 \times 8 \times (9 - 6)$ Alex Hwang, 2/15Overland Park, KS 169 (3.2) $(7 + 6)^{ \sqrt[\sqrt{9}]{8} }$ Steve Wilson, 3/15Lawrence, KS 170 (2.4) $\dfrac{9 + 8}{.7 - .6}$ Steve Wilson, 1/15Lawrence, KS 171 (2.4) $9 \times \left( \dfrac{8}{.\overline{6}} + 7 \right)$ Steve Wilson, 11/15Lawrence, KS 172 (2.0) $86 \times (9 - 7)$ Kenneth Chapman, 11/15Santa Paula, CA 173 (3.8) $\dfrac{(8 - \sqrt{9})!}{.\overline{6}} - 7$ Steve Wilson, 5/16Lawrence, KS 174 (2.0) $98 + 76$ Andreina Lugo Parra, 3/15Olathe, KS 175 (2.2) $\dfrac{98 + 7}{.6}$ Steve Wilson, 11/15Lawrence, KS 176 (1.0) $8 \times (6 + 7 + 9)$ Kenneth Chapman, 6/15Santa Paula, CA 177 (2.2) $\left( \dfrac{7}{.6} + 8 \right) \times 9$ Steve Wilson, 1/16Lawrence, KS 178 (3.4) $\dfrac{6! - 8}{7 - \sqrt{9}}$ Steve Wilson, 5/16Lawrence, KS 179 (3.4) $\dfrac{.8 - .6}{.\overline{7}\%} - .\overline{9}$ Steve Wilson, 10/16Lawrence, KS 180 (2.2) $(8 + 6) \times \dfrac{9}{.7}$ Steve Wilson, 1/15Lawrence, KS 181 (3.4) $\dfrac{.8 - .6}{.\overline{7}\%} + .\overline{9}$ Steve Wilson, 10/16Lawrence, KS 182 (3.4) $\dfrac{6! + 8}{7 - \sqrt{9}}$ Steve Wilson, 5/16Lawrence, KS 183 (2.0) $97 + 86$ Steve Wilson, 1/16Lawrence, KS 184 (3.4) $\dfrac{6!}{\sqrt{9}} - 7 \times 8$ Steve Wilson, 3/16Lawrence, KS 185 (3.2) $\dfrac{6}{(\sqrt{9})\%} - 8 - 7$ Steve Wilson, 11/16Lawrence, KS 186 (3.2) $6 \times (7 + 8 \times \sqrt{9})$ Steve Wilson, 10/16Lawrence, KS 187 (3.6) $\dfrac{(\sqrt{9})!}{6\%} + 87$ Steve Wilson, 5/16Lawrence, KS 188 (3.4) $\dfrac{6!}{7 - \sqrt{9}} + 8$ Steve Wilson, 9/16Lawrence, KS 189 (1.0) $(6 + 7 + 8) \times 9$ Andreina Lugo Parra, 2/15Olathe, KS 190 (3.6) $\dfrac{.8}{.\overline{6}\%} + \dfrac{.7}{.\overline{9}\%}$ Steve Wilson, 10/16Lawrence, KS 191 (2.2) $\dfrac{8 + 6}{7\%} - 9$ Kenneth Chapman, 11/15Santa Paula, CA 192 (2.4) $(7 + 9) \times \dfrac{8}{.\overline{6}}$ Steve Wilson, 1/16Lawrence, KS 193 (2.6) $\dfrac{8 - 6}{.\overline{9}\%} - 7$ Steve Wilson, 1/16Lawrence, KS 194 (2.0) $97 \times (8 - 6)$ Steve Wilson, 3/16Lawrence, KS 195 (2.6) $\dfrac{78}{.\overline{9} - .6}$ Steve Wilson, 1/16Lawrence, KS 196 (3.0) $(8 + 6)^{9-7}$ Steve Wilson, 11/16Lawrence, KS 197 (3.2) $68 \times \sqrt{9} - 7$ Steve Wilson, 3/16Lawrence, KS 198 (3.4) $(7 - \sqrt{9})! \times 8 + 6$ Steve Wilson, 10/16Lawrence, KS 199 (2.6) $\dfrac{8 + 6}{7\%} - .\overline{9}$ Steve Wilson, 2/16Lawrence, KS 200 (2.2) $\dfrac{8}{(6 + 7 - 9)\%}$ Steve Wilson, 5/15Lawrence, KS 201 (2.6) $\dfrac{8 + 6}{7\%} + .\overline{9}$ Steve Wilson, 2/16Lawrence, KS 202 (3.2) $\dfrac{.7}{(.\overline{9} - .\overline{6})\%} - 8$ Paolo Pellegrini, 3/17Martina Franca, Italy 203 (2.8) $\dfrac{.7}{.\overline{6}\%} + 98$ Steve Wilson, 2/16Lawrence, KS 204 (3.4) $\dfrac{7!}{8 \times \sqrt{9}} - 6$ Steve Wilson, 2/17Lawrence, KS 205 (3.6) $\dfrac{6 + (7 + 8)\%}{(\sqrt{9})\%}$ Steve Wilson, 12/16Lawrence, KS 206 (2.2) $\dfrac{9}{6\%} + 7 \times 8$ Kenneth Chapman, 1/16Santa Paula, CA 207 (2.6) $\dfrac{8 - 6}{.\overline{9}\%} + 7$ Steve Wilson, 2/16Lawrence, KS 208 (3.4) $\dfrac{\dfrac{7!}{8} - 6}{\sqrt{9}}$ Steve Wilson, 2/17Lawrence, KS 209 (2.2) $\dfrac{8 + 6}{7\%} + 9$ Steve Wilson, 2/16Lawrence, KS 210 (2.6) $\dfrac{7 \times 6}{.\overline{9} - .8}$ Steve Wilson, 5/15Lawrence, KS 211 (3.2) $68 \times \sqrt{9} + 7$ Steve Wilson, 3/16Lawrence, KS 212 (3.4) $\dfrac{ \dfrac{7!}{8} + 6}{\sqrt{9}}$ Paolo Pellegrini, 3/17Martina Franca, Italy 213 (2.8) $\dfrac{.9}{.\overline{6}\%} + 78$ Steve Wilson, 4/16Lawrence, KS 214 (3.4) $\dfrac{6! - 78}{\sqrt{9}}$ Paolo Pellegrini, 3/17Martina Franca, Italy 215 (3.2) $\dfrac{6}{(\sqrt{9})\%} + 8 + 7$ Steve Wilson, 11/16Lawrence, KS 216 (2.6) $\dfrac{6}{(9 - 7 \times .\overline{8})\%}$ Steve Wilson, 4/16Lawrence, KS 217 (2.8) $\dfrac{.8}{.\overline{6}\%} + 97$ Steve Wilson, 4/16Lawrence, KS 218 (3.2) $\dfrac{.7}{(.\overline{9} - .\overline{6})\%} + 8$ Paolo Pellegrini, 3/17Martina Franca, Italy 219 (2.6) $\dfrac{9 - 7}{.\overline{8}\%} - 6$ Steve Wilson, 4/16Lawrence, KS 220 (2.8) $\dfrac{7 - 8 \times .6}{.\overline{9}\%}$ Steve Wilson, 5/15Lawrence, KS 221 (1.0) $(6 + 7) \times (8 + 9)$ Kenneth Chapman, 6/15Santa Paula, CA 222 (2.8) $\dfrac{.9}{.\overline{6}\%} + 87$ Steve Wilson, 9/16Lawrence, KS 223 (2.8) $\dfrac{8 - 6 + .7\%}{.9\%}$ Steve Wilson, 4/16Lawrence, KS 224 (1.0) $(6 + 8) \times (7 + 9)$ Kenneth Chapman, 6/15Santa Paula, CA 225 (1.0) $(6 + 9) \times (7 + 8)$ Kenneth Chapman, 7/15Santa Paula, CA 226 (3.2) $\dfrac{678}{\sqrt{9}}$ Paolo Pellegrini, 3/17Martina Franca, Italy 227 (3.4) $7 \times \sqrt[.6]{8} + \sqrt{9}$ Paolo Pellegrini, 1/18Martina Franca, Italy 228 (2.2) $\dfrac{9}{6\%} + 78$ Kenneth Chapman, 2/16Santa Paula, CA 229 (3.2) $\dfrac{687}{\sqrt{9}}$ Paolo Pellegrini, 1/18Martina Franca, Italy 230 (2.6) $\dfrac{8 - 6 + 7\%}{.9\%}$ Steve Wilson, 5/15Lawrence, KS 231 (2.6) $\dfrac{9 - 7}{.\overline{8}\%} + 6$ Steve Wilson, 9/16Lawrence, KS 232 (3.0) $\dfrac{.7 + .9}{.\overline{6}\%} - 8$ Paolo Pellegrini, 1/18Martina Franca, Italy 233 (3.2) $7 \times \sqrt[.6]{8} + 9$ Paolo Pellegrini, 1/18Martina Franca, Italy 234 (2.0) $78 \times (9 - 6)$ Kenneth Chapman, 1/16Santa Paula, CA 235 (2.4) $\dfrac{7 + 8 - .9}{6\%}$ Steve Wilson, 9/16Lawrence, KS 236 (2.4) $\dfrac{7 + 8\%}{(9 - 6)\%}$ Steve Wilson, 11/16Lawrence, KS 237 (2.2) $\dfrac{9}{6\%} + 87$ Kenneth Chapman, 2/16Santa Paula, CA 238 (3.6) $\dfrac{7 + (6 + 8)\%}{(\sqrt{9})\%}$ Paolo Pellegrini, 1/18Martina Franca, Italy 239 (3.4) $\dfrac{6!}{\sqrt{9}} - 8 + 7$ Steve Wilson, 3/16Lawrence, KS 240 (2.2) $\dfrac{6}{.9 - \dfrac78}$ Steve Wilson, 11/16Lawrence, KS 241 (2.2) $\dfrac{8 + 7}{6\%} - 9$ Kenneth Chapman, 1/16Santa Paula, CA 242 (2.4) $\dfrac{9 + 8 - 6\%}{7\%}$ Steve Wilson, 12/16Lawrence, KS 243 (2.6) $\dfrac{9 \times .6}{.8 - .\overline{7}}$ Steve Wilson, 12/16Lawrence, KS 244 (2.4) $\dfrac{9 - 7}{.8\%} - 6$ Steve Wilson, 12/16Lawrence, KS 245 (3.2) $\sqrt{7^6} - 98$ Steve Wilson, 4/22Lawrence, KS 246 (2.8) $\dfrac{9 - .8}{.7 - .\overline{6}}$ Steve Wilson, 1/17Lawrence, KS 247 (3.2) $\dfrac{.8}{(.\overline{9} - .\overline{6})\%} + 7$ Paolo Pellegrini, 3/18Martina Franca, Italy 248 (3.0) $\dfrac{.7 + .9}{.\overline{6}\%} + 8$ Paolo Pellegrini, 3/18Martina Franca, Italy 249 (2.6) $\dfrac{7 + 8}{6\%} - .\overline{9}$ Steve Wilson, 1/17Lawrence, KS 250 (2.6) $\dfrac{.6}{(7 + 8 + 9)\%\%}$ Steve Wilson, 5/15Lawrence, KS 251 (2.6) $\dfrac{7 + 8}{6\%} + .\overline{9}$ Steve Wilson, 1/17Lawrence, KS 252 (3.0) $\dfrac{.9 + 78\%}{.\overline{6}\%}$ Paolo Pellegrini, 3/18Martina Franca, Italy 253 (3.4) $\dfrac{7 + 8}{6\%} + \sqrt{9}$ Paolo Pellegrini, 3/18Martina Franca, Italy 254 (3.2) $\sqrt{7^6} - 89$ Paolo Pellegrini, 3/18Martina Franca, Italy 255 (2.6) $\dfrac{9.7 - 8}{.\overline{6}\%}$ Steve Wilson, 1/17Lawrence, KS 256 (2.4) $\dfrac{9 - 7}{.8\%} + 6$ Steve Wilson, 1/17Lawrence, KS 257 (3.2) $7^{\sqrt{9}} - 86$ Steve Wilson, 4/17Lawrence, KS 259 (2.2) $\dfrac{7 + 8}{6\%} + 9$ Steve Wilson, 8/15Lawrence, KS 260 (2.2) $\dfrac{7.8}{(9 - 6)\%}$ Steve Wilson, 2/17Lawrence, KS 261 (2.0) $87 \times (9 - 6)$ Kenneth Chapman, 1/16Santa Paula, CA 262 (2.6) $\dfrac{9}{.7 - .\overline{6}} - 8$ Steve Wilson, 2/17Lawrence, KS 263 (3.4) $87.\overline{6} \times \sqrt{9}$ Steve Wilson, 8/19Lawrence, KS 264 (1.0) $(6 \times 7 - 9) \times 8$ Kenneth Chapman, 8/15Santa Paula, CA 265 (2.2) $\dfrac{8.9 + 7}{6\%}$ Steve Wilson, 3/17Lawrence, KS 267 (2.6) $\dfrac{8.9}{.7 - .\overline{6}}$ Steve Wilson, 3/17Lawrence, KS 268 (2.4) $\dfrac{9 + 7 + 8\%}{6\%}$ Steve Wilson, 3/17Lawrence, KS 269 (2.4) $\dfrac{8 + 7\%}{(9 - 6)\%}$ Steve Wilson, 3/17Lawrence, KS 270 (2.2) $\dfrac{6}{.8 - \dfrac79}$ Steve Wilson, 6/15Lawrence, KS 271 (3.2) $\sqrt{7^6} - 8 \times 9$ Jonathan Frank, 4/22Rye, NY 272 (3.2) $6^{\sqrt{9}} + 7 \times 8$ Niko Solstice, 8/17Location Withheld 273 (1.0) $7 \times (6 \times 8 - 9)$ Kenneth Chapman, 7/15Santa Paula, CA 275 (2.2) $\dfrac{9 + 7 + 6}{8\%}$ Steve Wilson, 3/17Lawrence, KS 277 (3.4) $6! \times \dfrac{\sqrt{9}}{8} + 7$ Steve Wilson, 4/22Lawrence, KS 278 (2.6) $\dfrac{9}{.7 - .\overline{6}} + 8$ Steve Wilson, 4/17Lawrence, KS 279 (2.6) $\dfrac{6}{.8 - .\overline{7}} + 9$ Steve Wilson, 4/17Lawrence, KS 280 (2.2) $\dfrac{9 + 7.8}{6\%}$ Steve Wilson, 6/15Lawrence, KS 281 (3.2) $9 \times \sqrt[.6]{8} - 7$ Steve Wilson, 9/21Lawrence, KS 282 (1.0) $6 \times (7 \times 8 - 9)$ Kenneth Chapman, 7/15Santa Paula, CA 285 (2.6) $\dfrac{8.9 - 7}{.\overline{6}\%}$ Steve Wilson, 4/17Lawrence, KS 287 (2.8) $\dfrac{8 - 6 + .9\%}{.7\%}$ Steve Wilson, 4/17Lawrence, KS 288 (2.4) $6 \times (7 - .\overline{9}) \times 8$ Steve Wilson, 8/18Lawrence, KS 289 (3.2) $\dfrac{867}{\sqrt{9}}$ Susan Vongphrachanh, 2/17Kansas City, KS 290 (2.2) $\dfrac{8.7}{(9 - 6)\%}$ Steve Wilson, 6/15Lawrence, KS 291 (3.8) $\dfrac{7}{\sqrt{9} \times 8\pmf} - .\overline{6}$ Steve Wilson, 4/22Lawrence, KS 292 (2.2) $\dfrac{6}{(9 - 7)\%} - 8$ Steve Wilson, 8/18Lawrence, KS 293 (3.6) $\dfrac{6!}{.8 \times \sqrt{9}} - 7$ Steve Wilson, 9/20Lawrence, KS 294 (2.4) $6 \times 7 \times (8 - .\overline{9})$ Steve Wilson, 8/18Lawrence, KS 295 (2.2) $\dfrac{9 + 8.7}{6\%}$ Steve Wilson, 8/18Lawrence, KS 296 (2.4) $\dfrac{6 - 8\%}{(9 - 7)\%}$ Steve Wilson, 8/18Lawrence, KS 297 (2.8) $\dfrac{.6}{.8 - .\overline{79}}$ Steve Wilson, 9/18Lawrence, KS 299 (3.4) $\dfrac{\sqrt{9}}{8\pmf} - 76$ Steve Wilson, 4/22Lawrence, KS 300 (2.2) $\dfrac{8 \times 6}{(9 + 7)\%}$ Steve Wilson, 6/15Lawrence, KS 303 (3.2) $6^{\sqrt{9}} + 87$ Niko Solstice, 8/17Location Withheld 304 (2.4) $\dfrac{6 + 8\%}{(9 - 7)\%}$ Steve Wilson, 9/18Lawrence, KS 305 (2.4) $\dfrac{7 - .9}{(8 - 6)\%}$ Steve Wilson, 9/18Lawrence, KS 306 (1.0) $(6 \times 7 - 8) \times 9$ Steve Wilson, 6/15Lawrence, KS 307 (3.6) $\dfrac{6!}{.8 \times \sqrt{9}} + 7$ Steve Wilson, 9/20Lawrence, KS 308 (2.2) $\dfrac{6}{(9 - 7)\%} + 8$ Steve Wilson, 12/16Lawrence, KS 312 (2.8) $\dfrac{9 - 7 + 8\%}{.\overline{6}\%}$ Steve Wilson, 9/18Lawrence, KS 315 (2.4) $\dfrac{9 \times .7}{(8 - 6)\%}$ Steve Wilson, 9/18Lawrence, KS 317 (3.6) $(8! - 6!)\% - 79$ Steve Wilson, 4/22Lawrence, KS 318 (3.4) $\dfrac{6!}{\sqrt{9}} + 78$ Steve Wilson, 9/21Lawrence, KS 319 (3.4) $\sqrt{7^6} - 8 \times \sqrt{9}$ Steve Wilson, 2/22Lawrence, KS 320 (2.6) $\dfrac{6}{\left( \dfrac78 + .\overline{9} \right)\%}$ Steve Wilson, 7/15Lawrence, KS 322 (1.0) $7 \times (6 \times 9 - 8)$ Kenneth Chapman, 7/15Santa Paula, CA 324 (2.4) $\dfrac{9}{(8.\overline{7} - 6)\%}$ Steve Wilson, 8/19Lawrence, KS 325 (2.4) $\dfrac{9.6 - 7}{.8\%}$ Steve Wilson, 8/19Lawrence, KS 326 (3.2) $\sqrt{7^6} - 8 - 9$ Steve Wilson, 9/20Lawrence, KS 327 (1.0) $6 \times 7 \times 8 - 9$ Alex Hwang, 4/15Overland Park, KS 328 (2.4) $(6 \times 7 - .\overline{9}) \times 8$ Steve Wilson, 8/19Lawrence, KS 329 (2.4) $(6 \times 8 - .\overline{9}) \times 7$ Steve Wilson, 8/19Lawrence, KS 330 (1.0) $6 \times (7 \times 9 - 8)$ Kenneth Chapman, 7/15Santa Paula, CA 331 (3.6) $7^{\sqrt{9}} - \dfrac{8}{.\overline{6}}$ Steve Wilson, 12/17Lawrence, KS 332 (2.8) $\dfrac{9 - 7 - .8\%}{.6\%}$ Steve Wilson, 2/20Lawrence, KS 333 (3.2) $6 \times 7 \times 8 - \sqrt{9}$ Steve Wilson, 2/22Lawrence, KS 334 (3.4) $\sqrt{7^6} - 8.\overline{9}$ Steve Wilson, 9/20Lawrence, KS 335 (2.4) $6 \times 7 \times 8 - .\overline{9}$ Niko Solstice, 7/17Location Withheld 336 (2.4) $7 \times 8 \times 9 \times .\overline{6}$ Niko Solstice, 7/17Location Withheld 337 (2.4) $6 \times 7 \times 8 + .\overline{9}$ Niko Solstice, 7/17Location Withheld 338 (3.4) $\sqrt{7^6} - 8 + \sqrt{9}$ Steve Wilson, 9/20Lawrence, KS 339 (3.2) $6 \times 7 \times 8 + \sqrt{9}$ Steve Wilson, 2/22Lawrence, KS 340 (2.2) $\dfrac{6.8}{(9 - 7)\%}$ Steve Wilson, 7/15Lawrence, KS 341 (2.2) $\dfrac{7}{(8 - 6)\%} - 9$ Steve Wilson, 2/20Lawrence, KS 342 (2.4) $(7 \times 8 + .\overline{9}) \times 6$ Steve Wilson, 2/20Lawrence, KS 343 (2.4) $(6 \times 8 + .\overline{9}) \times 7$ Steve Wilson, 2/20Lawrence, KS 344 (2.4) $(6 \times 7 + .\overline{9}) \times 8$ Steve Wilson, 2/20Lawrence, KS 345 (1.0) $6 \times 7 \times 8 + 9$ Jaspreet Kaur, 5/15Lenexa, KS 346 (3.6) $\sqrt{7^6} + \sqrt{8.\overline{9}}$ Steve Wilson, 5/22Lawrence, KS 347 (3.4) $\dfrac{7}{(8 - 6)\%} - \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 348 (3.4) $\sqrt{7^6} + 8 - \sqrt{9}$ Steve Wilson, 4/21Lawrence, KS 349 (2.6) $\dfrac{7}{(8 - 6)\%} - .\overline{9}$ Steve Wilson, 4/21Lawrence, KS 350 (2.6) $\dfrac{7 \times .\overline{9}}{(8 - 6)\%}$ Steve Wilson, 7/15Lawrence, KS 351 (2.6) $\dfrac{7}{(8 - 6)\%} + .\overline{9}$ Steve Wilson, 4/21Lawrence, KS 352 (3.4) $\sqrt{7^6} + 8.\overline{9}$ Steve Wilson, 4/21Lawrence, KS 353 (3.4) $\dfrac{7}{(8 - 6)\%} + \sqrt{9}$ Steve Wilson, 5/22Lawrence, KS 354 (3.4) $\sqrt{7^6} + 8 + \sqrt{9}$ Steve Wilson, 4/21Lawrence, KS 355 (3.6) $7^{\sqrt{9}} + \dfrac{8}{.\overline{6}}$ Steve Wilson, 12/17Lawrence, KS 356 (3.6) $\dfrac{7}{(8 - 6)\%} + (\sqrt{9})!$ Steve Wilson, 5/22Lawrence, KS 357 (3.2) $7^{\sqrt{9}} + 6 + 8$ Niko Solstice, 8/17Location Withheld 358 (3.4) $7 \times \dfrac{\sqrt{9}}{6\%} + 8$ Steve Wilson, 2/22Lawrence, KS 359 (2.2) $\dfrac{7}{(8 - 6)\%} + 9$ Steve Wilson, 5/21Lawrence, KS 360 (2.2) $\dfrac{9 \times 6}{(8 + 7)\%}$ Steve Wilson, 7/15Lawrence, KS 361 (3.6) $\dfrac{7!}{8 + 6} + .\overline{9}$ Steve Wilson, 5/21Lawrence, KS 362 (3.4) $\dfrac{\sqrt{9}}{8\pmf} - 7 - 6$ Steve Wilson, 5/22Lawrence, KS 363 (3.4) $\dfrac{7!}{8 + 6} + \sqrt{9}$ Steve Wilson, 5/21Lawrence, KS 364 (2.8) $7 \times \left( \dfrac{.6}{.\overline{9}\%} - 8 \right)$ Steve Wilson, 5/21Lawrence, KS 366 (3.6) $\dfrac{7!}{8 + 6} + (\sqrt{9})!$ Steve Wilson, 5/21Lawrence, KS 367 (2.6) $\dfrac{.6}{(7 + 9)\%\%} - 8$ Steve Wilson, 6/21Lawrence, KS 368 (2.4) $\dfrac{9 - 6}{.8\%} - 7$ Steve Wilson, 6/21Lawrence, KS 369 (1.0) $(6 \times 8 - 7) \times 9$ Kenneth Chapman, 8/15Santa Paula, CA 370 (1.0) $6 \times 7 \times 9 - 8$ Steve Wilson, 7/15Lawrence, KS 372 (2.8) $6 \times \left( \dfrac{.7}{.\overline{9}\%} - 8 \right)$ Steve Wilson, 6/21Lawrence, KS 374 (3.4) $\dfrac{\sqrt{9}}{8\pmf} - 7 + 6$ Steve Wilson, 6/22Lawrence, KS 375 (2.4) $\dfrac{6}{(9 - 7) \times .8\%}$ Steve Wilson, 6/21Lawrence, KS 376 (1.0) $(9 \times 6 - 7) \times 8$ Alex Hwang, 3/15Overland Park, KS 378 (2.2) $6 \times 7 \times 8.\overline{9}$ Niko Solstice, 7/17Location Withheld 380 (2.6) $\dfrac{76}{.\overline{9}-.8}$ Steve Wilson, 8/15Lawrence, KS 381 (3.6) $\dfrac{8!\%}{.9} - 67$ Steve Wilson, 6/22Lawrence, KS 382 (2.4) $\dfrac{9 - 6}{.8\%} + 7$ Steve Wilson, 6/21Lawrence, KS 383 (2.6) $\dfrac{.6}{(7 + 9)\%\%} + 8$ Steve Wilson, 7/21Lawrence, KS 384 (2.2) $6 \times 7.\overline{9} \times 8$ Steve Wilson, 7/21Lawrence, KS 386 (1.0) $6 \times 9 \times 7 + 8$ Carlos Perez, 3/15Overland Park, KS 387 (2.8) $\dfrac{86}{.\overline{9} - .\overline{7}}$ Steve Wilson, 7/21Lawrence, KS 388 (3.4) $\dfrac{\sqrt{9}}{8\pmf} + 7 + 6$ Steve Wilson, 6/22Lawrence, KS 389 (3.8) $(8! - ((9 - 6)!)!)\% - 7$ Steve Wilson, 6/22Lawrence, KS 390 (1.0) $(8 \times 9 - 7) \times 6$ Kenneth Chapman, 8/15Santa Paula, CA 391 (2.6) $\dfrac{.6}{(7 + 8)\%\%} - 9$ Steve Wilson, 7/21Lawrence, KS 392 (2.2) $6.\overline{9} \times 7 \times 8$ Steve Wilson, 7/21Lawrence, KS 393 (3.4) $8 \times \dfrac{\sqrt{9}}{6\%} - 7$ Steve Wilson, 2/22Lawrence, KS 394 (2.2) $\dfrac{8}{(9 - 7)\%} - 6$ Steve Wilson, 8/21Lawrence, KS 395 (2.2) $\dfrac{7.9}{(8 - 6)\%}$ Steve Wilson, 8/21Lawrence, KS 396 (2.8) $\dfrac{9 - 6 + 8\%}{.\overline{7}\%}$ Steve Wilson, 8/21Lawrence, KS 397 (2.4) $\dfrac{8 - 6\%}{(9 - 7)\%}$ Steve Wilson, 8/21Lawrence, KS 398 (3.6) $(8! - 6!)\% + 9 - 7$ Steve Wilson, 6/22Lawrence, KS 399 (1.0) $7 \times (6 \times 8 + 9)$ Kenneth Chapman, 9/15Santa Paula, CA 400 (2.2) $\dfrac{7 + 8 + 9}{6\%}$ Steve Wilson, 8/15Lawrence, KS

Page 1 (1-400), Page 2 (401+).